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Abstract

Algebraic techniques based on Laplace transform are widely used for solving

differential equations and evaluating transfer of signals while analyzing physical

aspects of many safety-critical systems. To facilitate formal analysis of these systems,

we present the formalization of Laplace transform using the multivariable calculus

theories of HOL-Light. In particular, we use integral, differential, transcendental and

topological theories of multivariable calculus to formally define Laplace transform in

higher-order logic and reason about the correctness of Laplace transform properties,

such as existence, linearity, frequency shifting and differentiation and integration

in time domain.

In order to demonstrate the practical effectiveness of this formalization, we use it

to develop a verification scheme of analog circuits. These days, analog circuits have

become an integral part of almost all embedded systems. However, the unavailability

of accurate analysis methods for analog circuits, which exhibit continuous behavior,

jeopardizes the usage of embedded systems in many safety-critical applications. In

order to overcome this limitation, we propose to use higher-order-logic theorem

proving for verifying analog circuits. Towards this direction, this thesis presents

an approach to formally verify the transfer functions of continuous models of

analog circuits using the Laplace transform theory. In particular, we presents a

higher-order-logic formalization of the Kirchhoffs voltage and current laws and

basic analog components using the HOL-Light theorem prover. To illustrate the

practical effectiveness and utilization of the proposed approach, we provide the

formal analysis of first and second-order Sallen-Key low-pass filters and Linear

Transfer Converter (LTC) circuit, which are commonly used electrical circuit.
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Chapter 1

Introduction

Laplace transform [25] is an integral transform method that is used to convert the

time varying functions to their corresponding s-domain representations, where s

represents the angular frequency [3]. This transformation provides a very compact

representation of the overall behavior of the given time varying function and is

frequently used for analyzing systems that exhibit a deterministic relationship

between continuously changing quantities and their rates of change. Laplace

transform theory allows us to solve linear Ordinary Differential Equations (ODEs)

[35] using simple algebraic techniques since the transformation allows us to convert

the integration and differentiation functions from the time-domain to multiplication

and division functions in the s-domain. Moreover, the s-domain representations

of ODEs are also used for transfer function analysis of the corresponding systems.

Due to these unique features, Laplace transform theory has been an integral part

of engineering and physical system analysis and is widely used in the design and

analysis of electrical networks, control systems, communication systems, optical

systems, analogue filters and mechanical networks.

Mathematically, Laplace transform is a complex function defined for a function

f , which can be either real or complex-valued, as follows

F (s) =
∫ ∞
0

f(t)e−stdt, s ∈ C (1.1)

The first step in analyzing differential equations using Laplace transform is to take



the Laplace transform of the given equation on both sides. Next, the corresponding

s-domain equation is simplified using various properties of Laplace transform, such

as existence, linearity, Laplace of a differential and Laplace of an integral. The

objective is to either solve the differential equation to obtain values for the variable s

or obtain the transfer function of the system corresponding to the given differential

equation.

1.1 Problem Statement

Traditionally, the above mentioned Laplace transform based analysis is performed

using computer based numerical techniques or symbolic methods. However, both

of these techniques cannot guarantee accurate analysis. Numerical methods cannot

ascertain an accurate value of the improper integral of Equation (1.1) as there is

always a limited number of iterations allowed depending on the available memory

and computation resources. The round-off errors due to the usage of computer

arithmetics also introduce some inaccuracies in the results. Symbolic methods,

provided by Symbolic Math Toolbox of Matlab and other computer algebra systems

like Maple and Mathematica, are based on algorithms that consider the improper

integral of Equation (1.1) as the continuous analog of the power series, i.e., the

integral is discretized to summation and the complex exponentials are sampled.

Moreover, the presence of huge symbolic manipulation algorithms, which are usually

unverified, in the core of computer algebra systems also makes the accuracy of their

analysis results questionable. For-instance, in the fields of control systems and

electrical engineering, techniques involving Laplace transform analysis are being

proposed and tested by using the Matlab and Maple Laplace transform libraries

[7, 30], that make them prone to inaccuracy approximation errors. Therefore, these

traditional techniques should not be relied upon for the analysis of systems using
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the Laplace transform method, especially when they are used in safety-critical

areas, such as medicine and transportation, where inaccuracies in the analysis could

result in system design bugs that in turn may even lead to the loss of human lives

in worst cases.

1.2 Proposed Solution

To overcome the above mentioned inaccuracy limitations, we propose to perform

the Laplace transform based analysis using a higher-order-logic theorem prover.

The main idea is to leverage upon the high expressiveness of higher-order logic to

formalize Equation (1.1) and use it to verify the classical properties of Laplace

transform within a theorem prover. These foundations can be built upon to reason

about the exact solution of a differential equation or its transfer function within

the sound core of a theorem prover. In particular, we formally verify the existence,

linearity and scaling properties of Laplace transform. We also presents the formal

verification of the Laplace transforms of an arbitrary order differential and integral

functions. The main advantage of these results is that they greatly minimize the

user intervention for formal reasoning about the correctness of many properties of

physical systems.

The main idea behind the proposed methodology is to use the HOL-Light

theorem prover [16], which supports formal reasoning about higher-order logic. The

main motivation behind this choice is the availability of reasoning support about

multivariable integral, differential, transcendental and topological theories [17],

which are the foremost foundations required for the formalization of Laplace

transform theory.

In order to illustrate the practical effectiveness and utilization of this formal-

ization, we use it to develop a methodology for the formal verification of transfer
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function of analog circuits. Formal verification of analog circuits is of utmost

importance [18]. However, to the best of our knowledge, all the existing formal

verification approaches work with abstracted discretized models of analog circuits

(e.g., [9], [5]). This is mainly because of the inability to model and analyze the

properties of differential equations in their true continuous form by the existing

formal methods. Our formalization of Laplace transform overcomes this limitation

and we have been able to formally verify the transfer function of the low-pass

Sallen-Key filters and LTC circuit using their differential equation.

1.3 Outline of the Thesis

The rest of the thesis report is organized as follows: To aid the understanding of

this work, a brief overview of formal verification and HOL-Light theorem prover is

provided in Chapter 2. Next, we present our formalization of Laplace transform

theory and its properties in Chapter 3. Chapter 4 contains our proposed formal

technique for analog circuits verification based on the formalized Laplace transform

theory. Finally, Chapter 5 concludes the thesis.

4



Chapter 2

Preliminaries

In this chapter, we present some foundational material about basics of formal

verification with focus on theorem proving and HOL-Light theorem prover to

facilitate understanding of this thesis.

2.1 Formal Verification

Formal methods are the use of ideas and techniques from applied mathematics and

logic to specify, analyze and reason about computing systems in order to increase

design assurance and eliminate defects. In hardware and physical systems, basic

aim of formal verification is to ensure the correct functionality with the highest

reliably and completeness as compared to simulation based verification techniques.

Because of the inherent soundness of formal verification, it has become an essential

step in the design process of systems for safety-critical applications.

Formal verification is broadly classified into two types i.e. theorem proving

and model checking. In theorem proving, implementation and specification of the

system are described in formal logic and then their relationship is verified within

the sound core of a theorem prover. Theorem prover actually builds on top of a

functional programming language; hence soundness and completeness are assured

for every verified theorem. Whereas in model checking, behavior of the system

is checked and its properties are verified using an algorithm that determines the

validity of formulae written in some temporal logic with respect to the behavioral



model of the system.

Systems dealing with continuous quantities and mathematical analysis including

complex and real numbers; like Laplace transform formalization; are best to be

verified using theorem proving because of its ability to handle the continuous values.

Theorem proving can completely capture their continuous behavior whereas model

checking works with the abstracted discretized models and thus gives incomplete

verification.

2.2 HOL-Light

HOL-Light is a higher-order-logic theorem prover that belongs to the HOL family

of theorem provers. Its unique features include an efficient set of inference rules

and the usage of Objective CAML (OCaml) language [16], which is a variant of the

strongly-typed functional programming language ML [24], for its development and

interaction. HOL-Light provides formal reasoning support for many mathematical

theories, including sets, natural numbers, real analysis, complex analysis and

vector calculus, and has been particularly successful in verifying many challenging

mathematical theorems. The main motivation behind choosing HOL-Light for the

formalization of Laplace transform theory in this thesis is the availability of a rich

set of formalized multivariable calculus theories on the Euclidean space [17].

2.3 Multivariable Calculus Theories in HOL-Light

The formalized multivariable calculus in HOL-Light contains integral, differential,

transcendental and topological theories. Their formalization is primarily based

on vector-space algebra. In HOL-Light, a n-dimensional vector is represented as

a Rn column matrix with individual elements as real numbers. All of the vector
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operations are then handled as matrix manipulations. This way, complex numbers

can be represented by the data-type R2, i.e, a column matrix having two elements.

Similarly, pure real numbers can be represented by two different data-types, i.e., by

a 1-dimensional vector R1 or a number on the real line R. All the vector algebraic

theorems have been formally verified using HOL-Light for arbitrary functions with

a flexible data-type Rn → R
m. For the formalization of Laplace transform, we

have utilized several vector algebraic theorems for complex functions (R2 → R
2)

and complex-valued functions (R1 → R
2).

In order to facilitate the understanding of the rest of the thesis, some of the

frequently used functions of the HOL-Light Multivariable calculus libraries [17] are

described below:

Definition 2.1: Cx

` ∀ a. Cx a = complex(a,&0)

The function Cx accepts a real number and return its corresponding complex number

with the imaginary part as zero. It uses the function complex, which accepts a

pair of real numbers and returns the corresponding complex number such that the

real part of the complex number is equal to the first element of the given pair and

the imaginary part of the complex number is the second element of the given pair.

The operator & maps a natural number to its corresponding real number.

Definition 2.2: Re and Im

` ∀ z. Re z = z$1

` ∀ z. Im z = z$2

The functions Re and Im accept a complex number and return its real and imaginary

parts, respectively. The notation z$n represents the nth component of a vector z.

Definition 2.3: drop and lift

7



` ∀ x. drop x = x$1

` ∀ x. lift x = (lambda i. x)

The function drop accepts a 1-dimensional vector and returns its single component

as a real number. The function lift maps a real number to a 1-dimensional vector

with its single component equal to the given real number.

Definition 2.4: Exponential Functions

` ∀ x. exp x = Re(cexp (Cx x))

The functions exp and cexp represent the real and complex exponential functions

in HOL-Light with data-types R→ R and R2 → R
2, respectively.

Definition 2.5: Limit of a function

` ∀ f net. lim net f = (@l. (f→l) net)

The function lim is defined using the Hilbert choice operator @ in the functional

form. It accepts a net with elements of arbitrary data-type A and a function f , of

data-type A→ R
m, and returns l : Rm, i.e., the value to which f converges at the

given net. To formalize the improper integral of Equation (1.1), we will use the

at posinfinity, which models positive infinity, as our net,

Definition 2.6: Integral

` ∀ f i. integral i f = (@y.(f has integral y) i)

` ∀ f i. real integral i f = (@y.(f has real integral y) i)

The function integral accepts an integrand function f : Rn → R
m and a vector-

space i : Rn → B, which defines the region of integration. Here, B represents

boolean data-type. It returns a vector of data-type Rm, which represents the

integral of f over i. The function has integral defines the same relationship in
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the relational form. In a similar way, the function real integral represents the

integral of a function f : R→ R, over a set of real numbers i : R→ B. The regions

of integration, for both of the above integrals, can be defined to be bounded by a

vector interval [a, b] or real interval [a, b] using the HOL-Light functions interval

[a,b] and real interval [a,b], respectively.

Definition 2.7: Derivative

` ∀ f net. vector derivative f net =

(@f’.(f has vector derivative f’) net)

The function vector derivative accepts a function f : R1 → R
m, which needs to

be differentiated, and a net of data-type R1 → B, that defines the point at which

f has to be differentiated. It returns a vector of data-type Rm, which represents

the differential of f at net. The function has vector derivative defines the same

relationship in the relational form.

We will build upon the above mentioned foundational definitions to formalize

the Laplace transform function in the next chapter.

2.4 Summary

Formal methods employing higher-order-logic theorem proving are most suitable

for the formalization of Laplace transform theory because of the ability to deal

continuous complex variables and underlying soundness. We have used HOL-Light

theorem prover to formalize the integral of Laplace transform and to verify its

properties because of the availability of formalized multivariable calculus; including

integral, differential, transcendental and topological theories; in HOL-Light. In

this chapter, we have provided the basic functions of these theories to aid in

understanding the definitions and theorems in rest of the thesis.

9



Chapter 3

Formalization of Laplace

Transform

In this chapter, we provide the formalization detail of Laplace transform definition

and its properties.

3.1 Formalized Laplace Transform Definition

Based on the theory of improper integrals [34], Equation (1.1) can be alternatively

expressed as follows:

F (s) = lim
b→∞

∫ b

0
f(t)e−stdt (3.1)

This definition holds under the conditions that the integral

f(b) =
∫ b

0
f(t)e−stdt (3.2)

exists for every b > 0 and the limit also exists as b approaches positive infinity.

Now, the Laplace transform function can be formalized in HOL-Light as follows:

Definition 3.1: Laplace Transform

` ∀ s f. laplace f s =

lim at posinfinity (λb. integral (interval [lift(&0),lift(b)])

(λt. cexp (-(s * Cx(drop t))) * f t))



The function laplace accepts a complex number s and a complex-valued function

f : R1 → R
2. It returns a complex number that represents the Laplace transform of

f according to Equation (3.1). The complex exponential function cexp: R2 → R
2

is used in this definition because the data-type for f(t) is R2. Similarly, in order

to multiply variable t : R1 with the complex number s, it is first converted to R by

using the function drop and then converted to data-type R2 by using Cx. Then, we

use the vector integration function integral to integrate the expression f(t)e−st

over the interval [0, b] since the return type of this expression is R2. The limit of

the upper interval b of this integral is then taken at positive infinity using the lim

function with the at posinfinity net. Based on the definition of at posinfinity,

the variable b must have a data-type R. However, the region of integration of

the vector integral function must be a vector space. Therefore, for data-type

consistency, we lift the value 0 and variable b in the interval of the integral to the

data-type R1 using the function lift.

The Laplace transform of a function f exists, i.e., the integral of Equation (3.2)

is integrable and the limit of Equation (3.1) is convergent, if f is piecewise smooth

and of exponential order on the positive real axis [3]. A function is said to be

piecewise smooth on an interval if it is piecewise differentiable on that interval.

Similarly, a causal function f : R → C is of exponential order if there exist

constants α ∈ R and M>0 such that |f(t)| ≤Meαt for all t ≥ 0. We formalize the

Laplace transform existence conditions in HOL-Light as follows:

Definition 3.2: Laplace Exists

` ∀ s f. laplace exists f s ⇔

(∀ b. f piecewise differentiable on interval [lift (&0),lift b] )

∧ (∃ M a. Re s > drop a ∧ exp order f M a)

The first conjunct in the above predicate ensures that f is piecewise differentiable

on the positive real axis. The second conjunct expresses the exponential order

11



condition of f for α < Re s using the following predicate:

Definition 3.3: Exponential Order Function

` ∀ f M a. exp order f M a ⇔ &0 < M ∧

(∀ t. &0 ≤ t ⇒ norm (f (lift t)) ≤ M * exp (drop a * t))

The function exp order accepts a function f : R1 → R
2, a real number M and

a complex number s and returns a True if M is positive and f is bounded by Meat

for all 0 < t.

3.2 Formal Verification of Laplace Transform Prop-

erties

In this section, we use Definition 3.1 to verify some of the classical properties

of Laplace transform in HOL-Light. The formal verification of these properties

not only ensures the correctness of our definition but also plays a vital role in

minimizing the user intervention in reasoning about Laplace transform based

analysis of systems, as will be depicted in Chapter 4.

3.2.1 Limit Existence of the Improper Integral

According to the limit existence of the improper integral of Laplace transform

property, if the given function f : R→ C fulfills the conditions for the existence of

its Laplace transform, i.e., it is of exponential order and piecewise smooth, then

there will certainly exists a complex number l, to which the complex-valued integral

of Equation (3.2) converges at positive infinity [3]. This property can be formalized

based on Definitions 3.1 and 3.2 as follows:

Theorem 3.1: Limit Existence of Integral of Laplace Transform

12



` ∀ f s. laplace exists f s ⇒

(∃l. ((λb. integral (interval [lift (&0),lift b])

(λt. cexp (-(s * Cx (drop t))) * f t)) → l) at posinfinity)

We proceed with the verification of the above theorem by first splitting the complex-

valued integrand, i.e., f(t)e−st, into its corresponding real and imaginary parts.

Now using the linearity property of integral, the conclusion of the theorem can be

expressed in terms of two integrals as follows:

∃l.( (λb. integral (interval [lift (&0),lift b])

(λt. Cx (Re (cexp (-(s * Cx (drop t))) * f t))) +

ii * integral (interval [lift (&0),lift b])

(λt. Cx (Im (cexp (-(s * Cx (drop t))) * f t)))) → l)

at posinfinity

where, ii represents the constant value
√
−1 that is multiplied with the imaginary

part of a complex number. Next, we verified the following two lemmas that allow

us to break the above subgoal into two subgoals involving the limit existence of

two real-valued integrals.

Lemma 3.1: Relationship between the Real and Complex Integral

` ∀ f s t l. (f has real integral l) (real interval [&0,t]) ⇒

((λt. Cx (f (drop t))) has integral Cx l)

(interval [lift (&0),lift t])

Lemma 3.2: Limit of a Complex-Valued Function

` ∀ f L1 L2.

((λt. Re (f t)) ⇒ L1) at posinfinity ∧

((λt. Im (f t)) ⇒ L2) at posinfinity ⇒

(f → complex (L1,L2)) at posinfinity

13



The subgoal for the limit existence of the first real-valued integral is as follows:

laplace exists f s ⇒

∃k. ((λb. real integral (real interval [&0,b])

(λx. abs (Re (cexp (-s * Cx (x)) * f(lift x))))) → k)

at posinfinity

The proof of the above subgoal is primarily based on the Comparison Test for

Improper Integrals [34], which has been formally verified as part of our development

as follows:

Lemma 3.3: Comparison Test for Improper Integrals

` ∀ f g a. (&0 ≤ a) ∧ (∀x. a ≤ x ⇒ &0 ≤ f x ∧ f x ≤ g x) ∧

(∀ b. g real integrable on real interval [a,b]) ∧

(∀ b. f real integrable on real interval [a,b]) ∧

(∃ k.((λb. real integral (real interval [a,b]) g)⇒ k)

at posinfinity) ⇒

(∃ k.((λb. real integral (real interval [a,b]) f) ⇒ k)

at posinfinity)

The laplace exists f s assumption of Theorem 3.1 ensures that the integrand

fe−st, of our subgoal, is upper bounded by Me−(Re(s)−α)t, which in turn can

also be verified to be integrable and having a convergent integral for Re s > α

as the upper limit of integration approaches positive infinity. Moreover, the

piecewise differentiability condition in the predicate laplace exists f s ensures

the integrability of f . These results allow us to fulfill the assumptions of Lemma

3.3 and thus conclude the limit existence subgoal for the real-valued integral of

the real part. The proof of the subgoal for the limit existence of the real-valued

integral corresponding to the imaginary part is very similar and its verification

concludes the proof of Theorem 3.1.
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3.2.2 Linearity

The linearity of Laplace transform can be expressed mathematically for two func-

tions f and g and two complex numbers α and β as follows [3]:

(
L αf(x) + βg(x)

)
(s) = α(Lf)(s) + β(Lg)(s) (3.3)

We verified this property as the following theorem:

Theorem 3.2: Linearity of Laplace Transform

` ∀ f g s a b. laplace exists f s ∧ laplace exists g s ⇒

laplace (λx. a * f x + b * g x) s =

a * laplace f s + b * laplace g s

The proof is based on Theorem 3.1 and the linearity properties of integration and

limit.

3.2.3 Frequency Shifting

The Frequency shifting property of Laplace transform deals with the case when the

Laplace transform of the composition of a function f with the exponential function

is required [3]. (
L ebtf(t)

)
(s) = (Lf)(s− b) (3.4)

These type of functions, called the damping functions, frequently occur in the

analysis of many natural systems like harmonic oscillators. Frequency shifting

property is used to analyze and measure the damping effects on the systems in the

corresponding s-domain [32]. We verified the property as the following theorem:

Theorem 3.3: Frequency Shifting

` ∀ f s b. laplace exists f s ⇒

laplace (λt. cexp (b * Cx (drop t)) * f t) s = laplace f (s - b)

15



3.2.4 Integration in Time Domain

The Laplace transform of an integral of a continuous function can be evaluated

using the integration in time domain property

(
L
∫ t

0
f(τ)dτ

)
(s) =

1

s
(Lf)(s) (3.5)

where Re s > 0 [3]. Such type of functions extensively occur in control and

electrical systems and their s-domain analysis is greatly simplified by using the

above relation [23]. This property has been verified in HOL-Light as follows:

Theorem 3.4: Integration in Time Domain

` ∀ f s. (&0 < Re s) ∧ laplace exists f s ∧

laplace exists (λx. integral (interval [lift (&0),x]) f) s ∧

(∀x. f continuous on interval [lift (&0),x]) ⇒

laplace (λx. integral (interval [lift (&0),x]) f) s =

inv(s) * laplace f s

where the function inv represents the reciprocal of a given vector. The proof of

the above theorem is primarily based on the Integration-by-parts property, which

was verified as part of the reported development as follows:

Lemma 3.4: Integration by Parts

` ∀ f g f’ g’ a b. (drop a ≤ drop b) ∧

(∀ x. (f has vector derivative f’ x)

(at x within interval [a,b])) ∧

(∀ x. (g has vector derivative g’ x)

(at x within interval [a,b])) ∧

(λx. f’ x * g x) integrable on interval [a,b] ∧

(λx. f x * g’ x) integrable on interval [a,b] ⇒
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integral (interval [a,b]) (λx. f x * g’ x) =

f b * g b - f a * g a - integral (interval [a,b])

(λx. f’ x * g x)

where the function integrable on formally represents the integrability of a vector

function on a vector space. The integrand of Theorem 3.4, which is the product of

a complex exponential and the function
∫ t
0 f(τ) dτ , can be simplified using Lemma

3.4 to obtain the following subgoal:

(&0 < Re s) ⇒

lim at posinfinity (λb. integral (interval [lift &0,lift b]) f *

-inv s * cexp (-(s * Cx (drop (lift b))))) -

lim at posinfinity (λb. integral (interval [lift &0,lift b])

(λx. f x * -inv s * cexp (-(s * Cx (drop x))))) =

inv s * lim at posinfinity (λb. integral

(interval[lift &0,lift b])(λt. cexp (-(s * Cx(drop t))) * f t))

The first term on the left-hand-side of the above subgoal can be verified to approach

zero at positive infinity since, based on the existence of Laplace transform condition,

f(t) grows more slowly than an exponential. The remaining two terms can then

verified to be equivalent based on simple arithmetic reasoning.

3.2.5 First Order Differentiation in Time Domain

The Laplace of a differential of a continuous function f is given as follows [3]:

(
L df
dx

)
(s) = s(Lf)(s)− f(0) (3.6)

We verified it as the following theorem:

Theorem 3.5: First Order Differentiation in Time Domain
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` ∀ f s. laplace exists f s ∧

laplace exists (λx. vector derivative f (at x)) s ∧

(∀ x. f differentiable at x) ⇒

laplace (λx. vector derivative f (at x)) s =

s * laplace f s - f (lift (&0))

using Theorem 3.1, Lemma 3.4 and the fact that f(t)e−st|∞0 = [0− f(0)].

3.2.6 Higher Order Differentiation in Time Domain

The Laplace of a n-times continuously differentiable function f is given as the

following mathematical relation [3]:

(
Ld

nf

dxn

)
(s) = sn(Lf)(s)−

n∑
k=1

sk−1
dn−kf(0)

dxn−k
(3.7)

This property forms the foremost foundation for analyzing higher-order differential

equations based on Laplace transform and is verified as follows:

Theorem 3.6: Higher Order Differentiation in Time Domain

` ∀ f s n. laplace exists higher derivative n f s ∧

(∀x. higher derivative differentiable n f x) ⇒

laplace (λx. higher order derivative n f x) s =

s pow n * laplace f s - vsum (1..n) (λx. s pow (x-1) *

higher order derivative (n-x) f (lift (&0)))

The first assumption ensures the Laplace existence of f and its first n higher-

order derivatives. Similarly, the second assumption ensures the differentiabil-

ity of f and its first n higher-order derivatives on x ∈ R. The expressions

higher order derivative n f x and vsum (1..n) f recursively model the nth

order derivative of f with respect to x and the vector summation of the n terms from
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1 to n of function f , respectively. The proof of Theorem 3.6 is based on induction

on variable n. The proof of the base case is based on simple arithmetic reasoning

and the step case is discharged using Theorem 3.5 and summation properties along

with some arithmetic reasoning.

The formalization, presented in this section, had to be done in an interactive

way due to the undecidable nature of higher-order logic and took around 5000

lines of HOL-Light code and approximately 800 man-hours. One of the major

challenges faced during this formalization is the non-availability of detailed proof

steps for Laplace transform properties in the literature. The mathematical texts

on Laplace transform properties provide very abstract proof steps and often ignore

the subtle reasoning details. For instance, all the mathematical texts that we came

across (e.g. [3, 27]) provide the exponential order condition as the only condition

for the limit existence of the improper integral of Laplace transform. However,

as described in Section 3.2.1, the actual formal proof is based on splitting the

complex-valued integrand into the corresponding real and imaginary parts and

using the Integral comparison test and we had to find this reasoning on our own.

Similarly, in verifying the integration in time property (Theorem 3.4), the exact

reasoning about the convergence of the term e−st
∫ t
0 f(τ) dτ to zero, which was the

main bottleneck in the proof, could not be found in any mathematical text on

Laplace transform.

Other time-consuming factors, associated with our formalization, include the for-

mal verification many multivariable calculus related theorems, which were required

in our formalization but were not available in the current HOL-Light distribution.

These generic results can be very useful for other similar formalizations and some

of the ones of common interest are given below.

Lemma 3.5: Upper Bound of Monotonically Increasing and Convergent f

` ∀ f n k. (&0 ≤ n) ∧ (∀n m. n ≤ m ⇒ f n ≤ f m) ∧
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((f → k) at posinfinity) ⇒ f n ≤ k

Lemma 3.6: Limit at Positive Infinity of f implies Limit of abs(f)

` ∀ f l. (f → l) at posinfinity ⇔

((λi. f (abs i)) → l ) at posinfinity

Lemma 3.7: Relationship between Real and Vector Derivative

` ∀ f f’ x s. ((f has real derivative f’) (atreal x within s)) ⇒

((Cx o f o drop has vector derivative Cx f’)

(at (lift x) within IMAGE lift s) )

Lemma 3.8: Chain Rule of Differentiation for Complex-valued Functions

` ∀ f g f’ g’ x s.((f has vector derivative f’) (at x within s)) ∧

((g has complex derivative g’) (at (f x) within IMAGE f s) ) ⇔

((g o f has vector derivative f’ * g’) (at x within s) )

The main advantage of the formal verification of Laplace transform properties

is that our proof script can be built upon to facilitate formal reasoning about the

Laplace transform based analysis of safety-critical systems, as depicted in the next

chapter.

3.3 Summary

We have formalized Laplace transform definition given in Equation (1.1) using the

integral and limit functions of HOL-Light. We have also defined functions to

formalize the basic conditions necessary for the existence of Laplace transform of a

function. [3] Using these definitions and mathematical reasoning in HOL-Light, we

have verified the limit existence and properties of Laplace transform. The proof

details are provided in this chapter. We have also highlighted some of the important

mathematical theorems that we verified in order to formalize Laplace transform

properties.
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Chapter 4

Applications: Analog Circuits

Verification

In this chapter, we use our formalized Laplace transform theory to develop a

methodology for the formal verification of transfer function of analog circuits.

With the latest advancement in the integrated circuit technology, several types

of analog circuits [12] are being designed to amplify, process and filter analog

signals in a wide range of applications. Functional verification of these analog

circuits used independently or as a part of an embedded system is of paramount

importance given the safety-critical nature of hardware applications these days.

The goal of the functional verification of an analog circuit is to make sure that the

implementation of the circuit exhibits the desired behavior. The implementation

of a given circuit is obtained from its structure and components along with the

well-known circuit analysis techniques. While the desired behavior of analog

circuits is usually expressed as the transfer function of output and input signals

in the s-domain, where s represents the angular frequency [21]. The relationship

between the implementation and the behavior is then verified by taking the Laplace

transform [31] of the differential equation obtained from the implementation model.

Traditionally, analog circuits are analyzed using simulation techniques. However,

simulation results cannot be termed as 100% accurate due to the approximations

introduced by using computer arithmetics, such as floating or fixed point numbers,

for constructing computer based models of the continuous analog circuits. Moreover,



the circuits are analyzed for some specific test cases only since exhaustive simulation

is not possible due to the continuous nature of inputs. Due to these limitations,

more rigorous and accurate analysis techniques for analyzing analog circuits are

actively sought and formal verification, i.e., a computer based mathematical analysis

technique, offers a promising solution [36].

Formal verification of analog circuits is an active area of research. Various

formal techniques, based on conformance and model checking, have been developed

in the last decade. However, to the best of our knowledge, all the existing formal

verification approaches work with abstracted discretized models of analog circuits.

In [29] and [2], conformance checking techniques have been presented to show the

equivalence between the specified and implemented transfer function of analog

circuits. In these techniques, the verification ideas are primarily based on the

discretization of the s-domain transfer functions to the z-domain using the bilinear

transformation, which raises issues, like the error analysis of transfer function

coefficients and the state-space explosion when the inherited discretization of the

design is encoded for larger models. Model checking (e.g., [8, 13, 20]) has also been

used to formally verify analog circuits but all the model checking based techniques

work with the abstraction of continuous dynamics because of the inability to model

and analyze continuous systems. Thus, despite the inherent soundness of formal

verification methods, such analysis cannot be termed as absolutely accurate.

We propose to use higher-order-logic theorem proving in order to formally verify

transfer functions of continuous models of analog circuits. Higher-order logic is a

system of deduction with a precise semantics and, due to its high expressiveness,

can be used to describe any mathematical relationship, including the transfer

functions of continuous models of analog circuit implementations and their desired

transfer function specifications. Their equivalence can then be verified within the

sound core of a theorem prover. Due to the high expressibility of higher-order logic,
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the proposed approach is very flexible in terms of analyzing a variety of analog

circuits and transfer functions.

As a first step towards the proposed direction, we present the higher-order-logic

formalization of the well-known Kirchhoffs voltage and current laws (commonly

known as KVL and KCL) [6] and a few basic components of analog circuits, like

resistor, inductor and capacitor. These are some of the foremost foundations

for analog circuit analysis. Thus, the formalization of these results along with

our formalized Laplace transform theory facilitates the formal analysis of analog

circuits within the sound core of a higher-order-logic theorem prover. To the

best of our knowledge, this is the first time that the formal reasoning support for

the above mentioned analog circuit analysis foundations is being presented. In

order to demonstrate the practical effectiveness and utilization of the reported

formalization, we utilize it to verify the transfer function of first and second-order

Sallen-Key low-pass filters [31] in a very straight-forward manner. Besides being

used in several applications, these filters are also used as the basic building blocks of

other higher-order low-pass filters and thus the formal verification of their transfer

functions would facilitate the verification of a wide range of higher-order-filters

as well. We also verify the transfer function of Linear Transfer Converter (LTC)

circuit which is a very important part of power electronic system.

4.1 Existing Analog Circuits Verification Tech-

niques based on Theorem Proving

In an early attempt to use higher-order-logic theorem proving for analog circuit

verification, the PVS theorem prover was used to formally prove the functional

equivalence between behavioral specification of VHDL-AMS designs and approxi-

mated linearized models of their synthesized netlists [11]. In the similar direction,
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Hanna [15] proposed an approach for verifying implementations of digital systems

described at the analog level of abstraction. This approach is based on specifying

the behaviors of transistors by conservative approximation techniques based on

piecewise-linear predicates on voltages and currents. Moreover, Hanna proposed

constraint based techniques for automating the verification process [14]. These

early attempts focus more on constructing the circuit component models and for

verifying the specification of the observed behaviour. However, the analyses were

done at a very high abstraction level and thus realistic analog circuit models using

complex numbers or differential equations were not used. This way, these analyses

cannot be termed as the most precise and accurate ones.

Denman et al [5] proposed a functional verification approach for analog circuits

using MetiTarski [1], which is an automated theorem prover for real-valued trigono-

metric functions. The behavioral model of the analog circuit is transformed into its

closed form solution by using the invlaplace function of Maple and an inequality

relating the closed form solution with the required property is fed to MetiTarski,

which in turn determines if the inequality holds and in this case also generates

the corresponding formal proof. A similar approach is also proposed in [22] for

the verification of analog circuits using MetiTarski in the presence of noise and

process variation by introducing stochastic modeling. However, these techniques

do not aim for the complete transfer function analysis and are not suitable for

real-world analog circuits that commonly deal with the complex voltages and

currents. Moreover, the usage of computer algebra algorithms, which are unverified

(cf. [5] p. 3), for calculating the closed form solution of the behavioral model

also compromises on the accuracy of the analysis. These formal and semi-formal

techniques have also been used for verifying some basic constituent components

and building blocks of analog circuits, like logic gates [15], operational amplifier

(op-amp) [5,11], oscillators [5] and op-amp integrator [22]. The proposed technique
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is generic enough to cater for the verification of all these components and their

arbitrary combinations. For illustration purpose, we present the verification of

Sallen-Key low pass filters, which are quite compatible in complexity to the existing

formally verified circuits.

The comprehensive survey article about the formal verification techniques for

the analog part of the A&MS systems [36] concludes by stating that, to date,

no technique has been successful to model the analog circuits with continuous

differential equations without approximations and to analyze them using Laplace

transform in the sound core of a theorem prover. In this thesis, we overcome these

limitations and have have been able to exactly model the true differential equation

based models of analog circuits and to verify their transfer functions by using the

formalized Laplace transform theory.

4.2 Methodology

The proposed methodology for the formal verification of transfer functions of analog

circuits is shown in Figure 4.1. The inputs required for the proposed verification

methodology are (i) a structural view of the given analog circuit representing the

connections of its sub-components, (ii) the modeling differential equation of the

given circuit relating its input and output quantities in the time domain and (iii)

the transfer function representing the required behavior in the s-domain. The first

step in the proposed methodology is to translate the structural representation of the

given circuit to its corresponding higher-order-logic function using the definitions

available in the formalized analog library. This provides us with our implementation

model as shown in the Figure 4.1. The next step in the proposed methodology is

to formalize the given modeling differential equation and the transfer function in

higher-order logic to get the formal differential equation based specification and the
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Figure 4.1: Proposed Methodology for the Formal Verification of Analog Circuits

formal transfer function based specification, respectively. These translations can be

done based on the available multivariable calculus formalizations in HOL-Light [17].

The next step is to formally verify the implication between the implementation

model and the formal differential equation based specification of the given circuit.

This verification can be done in a very straightforward way based on the formalized

analog library functions and some simple arithmetic reasoning. The next step in the

proposed methodology is to verify that the differential equation specification of the

given circuit implies the given transfer function specification using the formalized

Laplace transform theory and arithmetic reasoning. The two implications verified in

the last two steps also imply that the given structural view of the circuit implies the

given transfer function based specification, which concludes the formal verification

of the desired result within the sound core of the theorem prover.

The distinguishing features of this methodology include the higher confidence in

the verification results due to the usage of pure complex and real number data-types

for modeling the given circuit and the usage of theorem proving for the verification.
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It is important to note that, just like any other verification approach, the proposed

methodology requires the circuit and its desired behavior to be known apriori and

it just allows us to formally verify that they correspond to one another.

4.3 Formalization of Analog Library

In this section, we explain our formalization of the various analog components

and circuit simplification rules. To facilitate the understanding of definitions and

theorems, HOL-Light definitions and functions in this chapter are described using a

mixed-form notation, i.e., mathematical symbols are used for arithmetic operators,

like integration, differentiation and summation.

We begin by formalizing the voltage and current expressions for a resistor, ca-

pacitor and inductor, which are the most commonly used analog circuit components,

as the following higher-order-logic functions:

Definition 4.1: Resistor, Inductor and Capacitor

` ∀ R i.res vol R i = (λt.i t * R)

` ∀ R v.res cur R v = (λt.v t / R)

` ∀ L i.ind vol L i = (λt.L * di
dt
)

` ∀ L v Io.ind cur L v Io =

(λt.Io + 1/L *
∫ t
0 v(t) dt)

` ∀ C i Vo.cap vol C i Vo =

(λt.Vo + 1/C *
∫ t
0 i(t) dt)

` ∀ C v. cap cur = (λt.C * dv
dt
)

where (λx. f(x)) represents the lambda abstraction function f which accepts a

variable x and returns f(x). The variables i and v represents the time-dependant

current and voltage variables, respectively, of complex data type. While the variables
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R, L and C represent the constant resistance, inductance and the capacitance of

their respective components, respectively. The variables Io and V o are used in

the definitions of inductance and capacitance to model the initial current in the

inductor and the initial voltage across the capacitor [6], respectively. All these

functions return a complex-valued type function that models the corresponding

time dependant voltage or current.

Kirchhoff’s voltage law (KVL) and Kirchhoff’s current law (KCL) [6] form the

most foundational circuit analysis and simplification laws. The KVL and KCL

state that the directed sum of all the voltage drops around any closed network

(loop) of an electrical circuit and the directed sum of all the branch currents leaving

an electrical node is zero, respectively. Mathematically:

n∑
k=1

Vk = 0,
n∑
k=1

Ik = 0 (4.1)

where Vk and Ik represent the voltage drops across the kth component in a loop

and the current leaving the kth branch in a node, respectively. Their formalization

is as follows:

Definition 4.2: Kirchhoff’s Voltage and Current Law

` ∀ V t. kvl V t =

(
∑LENGTH V−1
k=0 (λn.EL n V t) = 0)

` ∀ V t. kcl I t =

(
∑LENGTH I−1
k=0 (λn.EL n I t) = 0)

The function kvl accepts a list V of functions of type (real→ complex), which

represents the behavior of time-dependant voltages in the given circuit and a time

variable t as a real number. It returns the predicate that guarantees that the sum

of all the voltages in the loop is zero. Similarly, the function kcl accepts a list I,

which represents the behavior of time-dependant currents and a time variable t and
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returns the predicate that guarantees that the sum of all the currents leaving the

node is zero. Here, EL is a HOL-Light function, which takes a list and a number n

and returns the nth element of the list. Similarly, LENGTH takes a list as the input

and return a number representing the total number of elements in the list.

4.4 Verified Circuits

The proposed methodology can be applied to formally verify the s-domain transfer

functions for a wide range of analog circuits. In order to illustrate the practical

effectiveness and utilization of the proposed methodology for verifying real-world

analog circuits, we present the verification of first and second-order Sallen-Key

low-pass filters [31] and Linear Transfer Converter (LTC) circuit in this section.

4.4.1 Sallen-Key Low Pass Filters

Sallen-Key is one of the most widely used filter topologies [33] and Sallen-Key low

pass filters are extensively being used in numerous applications, such as analog-to-

digital converters, radio transmitters, audio crossover and telephone lines [12].

4.4.2 First-Order Sallen-Key Low Pass Filter

First-order Sallen-Key low-pass filter is shown in Figure (4.2). Its modeling

differential equation and transfer function are as follows: [4]

R1C1
dvout(t)

dt
+ vout(t) = vin(t) (4.2)

Vout(s)

Vin(s)
=

1

R1C1s+ 1
(4.3)

By using our formal analog library definitions, the implementation model for
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Figure 4.2: First-Order Sallen-Key Low-Pass Filter

the first-order low-pass filter is obtained as follows:

Definition 4.3: Implementation of 1st-order LP Filter

` ∀ R1 C1 Vin Vout Va.

LP imp R1 C1 Vin Vout Va =

(∀t. 0 < t ⇒

kcl [res cur R1 (λt. Vin t - Va t);

cap cur C1 (λt. -Va t)] t) ∧

(λt. 0 < t ⇒ Va t = Vout t)

where Va represents the voltage at non-inverting input of the op-amp in Figure 4.2.

The first conjunct represents the node at the non-inverting input of the op-amp. In

the given circuit, the op-amp is being used in the negative-feedback configuration.

The second conjunct in the above definition represents this negative-feedback

configured op-amp, which ensures that the voltage at the inverting input of op-amp

is equal to the output voltage [28].

According to the proposed methodology, the next step is to formalize the

differential equation and the required transfer function of the given first-order

low-pass filter as follows:

Definition 4.4: Differential Eq. Spec. of 1st-order LP Filter
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` ∀ R1 C1 Vin Vout y.

LP behav R1 C1 Vin Vout y =

(diff eq lhs [λt.1; λt.R1 * C1] Vout 2 y =

Vin y)

Definition 4.5: Transfer Function Spec. of 1st-order LP Filter

` ∀ R1 C1 Vin Vout s.

first order tran fun spec R1 C1 Vin Vout s =

( laplace V out s
laplace V in s

= 1
R1∗C1∗s+1

)

where the function diff eq lhs is used to formalize the left-hand-side (LHS) of a

differential equation. It accepts a list corresponding to the coefficients of terms of

differential equation, the differentiable function and the differentiation variable and

returns the LHS of the equation in the summation form having individual terms

as the product of coefficients and derivatives of the differentiable function with

respect to the differentiation variable. Then, the following theorem representing

the implication between the implementation and the formal differential equation

specification can be verified:

Theorem 4.1: Relationship between Implementation and Differential Eq. Spec.

` ∀ R1 C1 Vin Va Vout.(0 < R1) ∧ (0 < C1) ∧

(∀t. differentiable 1 Vout (at t)) ∧

(∀t. differentiable 1 Vin (at t)) ∧

(LP imp R1 C1 Vin Vout Va) ⇒

(∀t.(0 < t) ⇒ LP behav R1 C1 Vin Vout t)

In the above theorem, the first two assumptions ensure that the resistors and

capacitors values in the given circuit must be greater than zero, which is the

necessary condition for the circuits to exhibit the behavior of Equation 4.2. In
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the next two assumptions, the differentiable function is used to ensure the

differentiability of the input, output and the nodal voltage of the circuit which is

also a necessary condition. Note that we have not put the differentiability condition

for Va as it is equal to the Vout according to the implementation. Finally, the last

assumption represents the implementation model of the given circuit. The proof

of Theorem 4.1 is based on the function definitions along with some multivariable

arithmetic reasoning and is thus very straightforward.

Once, the modeling differential equation is formally verified, the following

theorem is verified indicating the implication between differential equation and

transfer function specification using formalized Laplace Transform Theory.

Theorem 4.2: Relationship between Diff. Eq. and Transfer Function Spec.

` ∀ R1 C1 Vin Vout t s.(0 < R1) ∧ (0 < C1) ∧

(∀t. differentiable 1 Vout (at t)) ∧

(∀t. differentiable 1 Vin (at t)) ∧

(laplace exists higher deriv 1 Vout s) ∧

(laplace exists higher deriv 1 Vin s) ∧

(s 6= −1
R1∗C1

) ∧ (laplace Vin s 6= 0) ∧

(∀t.(0 < t ⇒ LP behav R1 C1 Vin Vout t) ∧

((t = 0) ⇒ Vin = 0 ∧ Vout = 0)) ⇒

tf spec R1 C1 Vin Vout s

Besides the assumptions, used in Theorem 4.1, the predicate laplace exists higher deriv

is used to ensure the Laplace transform existence of Vin and Vout and their first

two derivatives as well for s, which indicates the frequency domain variable in our

analysis. These conditions are necessary for the translation of Equation 4.2 to the

s-domain [31]. The next assumption is used to avoid singularities in the transfer

function and is also indicating the pole of the transfer function. Similarly, the next

assumption represents the non-zero condition of the Laplace transform of the input
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voltage Vin [31]. Finally, the last assumption represents the differential equation of

the given circuit. The above theorem is proved by using the functions and theorems

of the formalized Laplace transform theory and multivariable calculus reasoning.

This concludes the formal verification of the transfer function of the first-order

Sallen-Key low-pass filter.

4.4.3 Second-Order Sallen-Key Low Pass Filter

Now, we will explain the verification of second-order Sallen-Key low-pass filter

in detail. Second-order Sallen-Key low-pass filter is shown in Figure (4.3). The

Figure 4.3: Second-Order Sallen-Key Low-Pass Filter

modeling differential equation and transfer function of the second-order low-pass

filter are as follows: [31]

R1C1R2C2
d2vout(t)

dt2
+ C2(R1 +R2)

dvout(t)

dt
+ vout(t) = vin(t) (4.4)

Vout(s)

Vin(s)
=

1

R1C1R2C2s2 + C2(R1 +R2)s+ 1
(4.5)

By using our formal analog library definitions, the implementation model for the

second-order low-pass filter is obtained as follows:

Definition 4.6: Implementation of 2nd-order LP Filter
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` ∀ R1 C1 R2 C2 Vin Vout Va Vb.

LP imp R1 C1 R2 C2 Vin Vout Va Vb =

(∀t. 0 < t ⇒

kcl[res cur R1 (λt.Vin t - Va t);

res cur R2 (λt.-(Va t - Vb t));

cap cur C1 (λt.-(Va t - Vout t))] t ) ∧

(∀t. 0 < t ⇒

kcl [res cur R2 (λt.Va t - Vb t);

cap cur C2 (λt.-Vb t)] t) ∧

(∀t. 0 < t ⇒ Vb t = Vout t)

where Va represents the voltage at the node joining R1, R2 and C1 and Vb represents

the voltage at non-inverting input of the op-amp in Figure 4.3. The first conjunct

represents the node joining R1, R2 and C1 using the formalized KCL while the

second conjunct represents the node at the non-inverting input of the op-amp. In the

given circuit, the op-amp is being used in the negative-feedback configuration. The

third conjunct in the above definition represents this negative-feedback configured

op-amp, which ensures that the voltage at the inverting input of op-amp is equal

to the output voltage [28].

According to the proposed methodology, the next step is to formalize the

differential equation and the required transfer function of the given second-order

low-pass filter as follows:

Definition 4.7: Differential Eq. Spec. of 2nd-order LP Filter

` ∀ R1 C1 R2 C2 Vout Vin y.

LP behav R1 C1 R2 C2 Vout Vin y =

diff eq lhs [λt.1; λt.C2 * (R1 + R2);

λt.R1 * C1 * R2 * C2] Vout 3 y = Vin y
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Definition 4.8: Transfer Function Spec. of 2nd-order LP Filter

` ∀ R1 C1 R2 C2 Vin Vout s.

tf spec R1 C1 R2 C2 Vin Vout s

( laplace V out s
laplace V in s

= 1
R1∗C1∗R2∗C2∗s2+C2∗(R1+R2)∗s+1

)

The following theorem representing the implication between the implementation

and the formal differential equation specification can be verified:

Theorem 4.3: Relationship between Implementation and Differential Eq. Spec.

` ∀ R1 C1 R2 C2 Vin Va Vb Vout.(0 < R1) ∧

(0 < C1) ∧ (0 < R2) ∧ (0 < C2) ∧

(∀t. differentiable 2 Vout (at t)) ∧

(∀t. differentiable 2 Vin (at t)) ∧

(∀t. differentiable 2 Va (at t)) ∧

(LP imp R1 C1 R2 C2 Vin Vout Va Vb) ⇒

(∀t.(0 < t) ⇒ LP behav R1 C1 R2 C2 Vin

Vout t)

In the above theorem, the first four assumptions ensure that the resistors and

capacitors values in the given circuit must be greater than zero, which is the

necessary condition for the circuits to exhibit the behavior of Equation 4.4. In

the next three assumptions, the differentiable function is used to ensure the

differentiability of the input, output and the nodal voltage of the circuit which is

also a necessary condition. Note that we have not put the differentiability condition

for Vb as it is equal to the Vout according to the implementation. Finally, the last

assumption represents the implementation model of the given circuit. The proof

of Theorem 4.3 is based on the function definitions along with some multivariable

arithmetic reasoning and is thus very straightforward.
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Once, the modeling differential equation is formally verified, the following

theorem is verified indicating the implication between differential equation and

transfer function specification using formalized Laplace Transform Theory.

Theorem 4.4: Relationship between Diff. Eq. and Transfer Function Spec.

` ∀ R1 C1 R2 C2 Vin Vout t s.(0 < R1) ∧

(0 < C1) ∧ (0 < R2) ∧ (0 < C2) ∧

(∀t. differentiable 2 Vout (at t)) ∧

(∀t. differentiable 2 Vin (at t)) ∧

(∀t. differentiable 2 Va (at t)) ∧

(laplace exists higher deriv 2 Vout s) ∧

(laplace exists higher deriv 2 Vin s) ∧

(s 6= −C2∗(R1+R2)+
√
C22∗(R1+R2)2−4∗R1∗C1∗R2∗C2

2∗R1∗C1∗R2∗C2
) ∧

(s 6= −C2∗(R1+R2)−
√
C22∗(R1+R2)2−4∗R1∗C1∗R2∗C2

2∗R1∗C1∗R2∗C2
) ∧

(laplace Vin s 6= 0) ∧ (∀t.(0 < t ⇒

LP behav R1 C1 R2 C2 Vin Vout t) ∧

((t = 0) ⇒ Vin = 0 ∧ Vout = 0)) ⇒

tf spec R1 C1 R2 C2 Vin Vout s

Besides the assumptions, used in Theorem 4.3, the predicate laplace exists higher deriv

is used to ensure the Laplace transform existence of Vin and Vout and their first

two derivatives as well for s, which indicates the frequency domain variable in

our analysis. These conditions are necessary for the translation of Equation 4.4

to the s-domain [31]. The next two assumptions are used to avoid singularities

in the transfer function and are also indicating the poles of the transfer function.

Similarly, the next assumption represents the non-zero condition of the Laplace

transform of the input voltage Vin [31]. Finally, the last assumption represents

the differential equation of the given circuit. The above theorem is proved by

using the functions and theorems of the formalized Laplace transform theory and
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multivariable calculus reasoning. This concludes the formal verification of the

transfer function of the second-order Sallen-Key low-pass filter.

4.4.4 Linear Transfer Converter (LTC) circuit

Linear Transfer Converter (LTC) circuit, depicted in Figure (4.4), is widely used

for converting the voltage and current levels in power electronics systems [26].

The functional correctness of power systems mainly depends on the design and

stability of LTCs and thus the accuracy of LTC analysis is of dire need. Standard

design techniques of LTCs are based on the transfer function analysis, i.e., the

differential equation of a LTC circuit is first converted into its corresponding s-

domain equivalent, and then depending upon the required stability requirements,

the values of circuit components, like resistors and inductors are calculated [19].

We perform this analysis using our formalization of Laplace transform within the

sound core of HOL-Light theorem prover in this paper. The behavior of the LTC

Figure 4.4: Linear Transfer Converter (LTC) Circuit

circuit, with input complex voltage u(t) across the voltage generator, and the

output complex voltage y(t), across the resistor R, can be expressed using the

following differential equation [3]:

d2y

dt2
− 2

RC

dy

dt
+

1

LC
y =

d2u

dt2
− 1

LC
u (4.6)
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The corresponding transfer function of this given circuit is as follows [3]:

Y (s)

U(s)
=

s2 − 1
LC

s2 − 2s
RC

+ 1
LC

(4.7)

The objective of this section is to verify this transfer function using Equation (4.6).

In order to be able to formally express Equation (4.6), we formalized the following

function to model an n-order differential equation in HOL-Light:

Definition 4.9: Differential Equation

` ∀ n A f x. diff eq lhs n A f x ⇔

vsum (0..n) (λt. EL t L x * higher order derivative t f x)

Now, Equation (4.6) can be formalized as follows:

Definition 4.10: Differential Equation of LTC

` ∀ y u x L C R. diff eq LTC y u x L C R ⇔

diff eq 2 [ Cx (&1 / L * C); --Cx (&2 / R * C); Cx (&1)] y x =

diff eq 2 [ --Cx (&1 / L * C ); Cx (&0); Cx (&1)] u x

The function diff eq LTC accepts the output voltage function y : R1 → R
2, the

input voltage function u : R1 → R
2, the resistance R : R, the inductance L : R

and the capacitance C : R being the capacitance and x : R1 being time. It then

returns Equation (4.6) in the summation form.

Now, the transfer function of the given LTC circuit, given in Equation (4.7),

can be verified as the following theorem in HOL-Light.

Theorem 4.5: Transfer function of LTC

` ∀ y u s R L C. (&0 < R) ∧ (&0 < L) ∧ (&0 < C) ∧

(zero initial conditions 1 u) ∧ ( zero initial conditions 1 y) ∧

(∀x. higher derivative differentiable 2 y x) ∧

(∀x. higher derivative differentiable 2 u x) ∧
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(higher derivative laplace exists 2 y s) ∧

(higher derivative laplace exists 2 u s) ∧

∼((Cx(&1/(L*C)) - Cx(&2/(R*C))*s) + s pow 2 = Cx(&0) )∧

∼(laplace u s = Cx(&0)) ∧ (∀t. diff eq LTC y u t L C R) ⇒

(laplace y s / laplace u s =

(s pow 2 - Cx(&1/(L*C))) / ((Cx(&1/(L*C)) -

Cx(&2/(R*C))*s) + s pow 2))

The first three assumptions ensure the positive values for resistor, inductor and

capacitor, respectively. The predicate zero initial conditions is used to define

the initial conditions, i.e., to assign a value 0 to the given function and its n

derivatives at time equal to zero. In our case, we need zero initial conditions

for the functions u and y up to the first-order derivative, which are modeled

using the fourth and fifth assumptions. The next four assumptions ensure that

the functions y and u are differentiable up to the second-order and the Laplace

transform exists up to the second order derivatives of these functions. The last

assumption represents the formalization of Equation (4.6) and the conclusion of

the theorem represents Equation (4.7). The reasoning about the correctness of

Theorem 4.5 is very straightforward and is primarily based on Definition 3.1 and

Theorem 3.6 and some simple arithmetic reasoning.

The usefulness of our proposed technique is that for verifying the transfer

function of analog circuits using higher-order-logic theorem proving, the analog

circuit designers do not need to go into the subtle details of the Laplace transform

mathematics and they can easily formalize the transfer functions by using the

already formalized Laplace transform definition and properties. The foundational

Laplace transform and analog circuit library formalization had to be done in an

interactive way, due to the undecidable nature of higher-order logic, and took

around 5000 lines of HOL-Light code and approximately 800 man-hours. Utilizing
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this work, the proof script of corresponding to the Sallen-Key Low-pass filters

verification consists of approximately 650 lines of HOL-Light code and the proof

process took just a couple of hours, which clearly indicates the usefulness of our

work. All of the assumptions have to be explicitly mentioned along with the

theorems in order to prove them in HOL-Light. For instance, the positive values

of the circuit components and differentiability of the voltages are often ignored in

the analog circuit design literature [31] but has been explicitly indicated in our

analysis. Similarly, the poles of the given circuit can also explicitly observed from

the formally verified theorem.

4.5 Summary

We applied our formalized Laplace transform theory to develop a formal verification

scheme for transfer functions of analog circuits as shown in Figure 4.1. Existing

formal verification techniques employ model checking; however these provide in-

accurate analysis because of inherent approximations involved in modeling the

continuous behavior of analog circuits.
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Chapter 5

Conclusions

This thesis advocates the usage of higher-order-logic theorem proving for conducting

Laplace transform based analysis, which is an essential design step for almost all

physical systems. Due to the high expressiveness of the underlying logic, we

can formally model the differential equation depicting the behaviour of the given

physical system in its true form, i.e., without compromising on the precision

of the model. The Laplace transform method can then be used in a theorem

prover to deduce interesting design parameters from this equation. The inherent

soundness of theorem proving guarantees correctness of this analysis and ensures

the availability of all pre-conditions of the analysis as assumptions of the formally

verified theorems. To the best of our knowledge, these features are not shared by

any other existing computerized Laplace transform based analysis technique and

thus the proposed approach can be very useful for the analysis of physical systems

used in safety-critical domains.

The main challenge in the proposed approach is the enormous amount of user

intervention required due to the undecidable nature of the higher-order logic. We

propose to overcome this limitation by formalizing Laplace transform theory in

higher-order logic and thus minimizing the user guidance in the reasoning process

by building upon the already available results. As a first step towards this direction,

this work presents the formalization of Laplace transform and the formal verification

of some of its classical properties, such as existence, linearity, frequency shifting

and differentiation and integration in time domain, using the multivariable calculus



theories of HOL-Light.

Based on the formalization of Laplace transform theory, we are able to use the

higher-order-logic theorem proving for verifying the transfer functions of analog

circuits, which is an essential step in analog circuit design. We can formally model

the structure of the given analog circuit and the differential equation depicting its

behavior and by using the formalized Laplace transform theory, its transfer function

can also be deduced within the sound core of theorem prover. Theorem proving

captures the continuous nature of analog signals and their Laplace transform

without introducing any discretization and thus providing the complete and most

accurate form of verification. We have formally verified the transfer functions of

low-pass Sallen-Key filters and LTC circuit which are commonly used electronic

circuit in a very straightforward way

5.1 Future Work

Our formalization can also be built upon to formalize the inverse Laplace transform

function and its associated properties, which can be very useful in analyzing the

behavior of engineering systems in the time-domain [3]. Our formalization can

also be used to formalize other mathematical transforms. For instance, Fourier

transform [10], which is a foundational mathematical theory for analyzing digital

signal processing applications, can be easily formalized by restricting the variable s

of the Laplace transform definition to acquire pure imaginary values only. Moreover,

circuits whose transfer functions have been verified by our proposed technique can

be added as formalized components in the Formalized Analog Library and then

can be used to verify other circuits. For instance, the verified models of first and

second-order Sallen-Key low-pass filters, presented in this paper, can be used to

verify the transfer function of the third-order Sallen-Key low-pass filters.
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