Low Power Soft Error Tolerant Macro Synchronous Micro Asynchronous (MSMA) Pipeline

Faiq Khalid Lodhi , Syed Rafay Hasan , Osman Hasan and Falah Awwad

Abstract

Advancement in deep submicron (DSM) technologies led to miniaturization. However, it also increased the vulnerability against some electrical and device non-idealities, including the soft errors. These errors are significant threat to the reliable functionality of digital circuits. Several techniques for the detection and deterrence of soft errors (to improve the reliability) have been proposed, both in synchronous and asynchronous domain. In this project we propose a low power and soft error tolerant solution for synchronous systems that leverages the asynchronous pipeline within a synchronous framework. We named our technique as macro synchronous micro asynchronous (MSMA) pipeline. We provided a framework along with timing analysis of the MSMA technique. MSMA is implemented using a macro synchronous system and soft error tolerant and low power version of null convention logic (NCL) asynchronous circuit. It is found out that this solution can easily replace the intermediate stages of synchronous and asynchronous pipelines without changing its interface protocol. Such NCL asynchronous circuits can be used as a standard cell in the synchronous ASIC design flow. Power and performance analysis is done using electrical simulations, which shows that this techniques consumes at least 22% less power and 45% less energy delay product (EDP) compared to state-of-the-art solutions.

Methodology

nad

Low Power Soft Error Tolerant Macro Synchronous Micro Asynchronous (MSMA) Pipeline

Experimental Results

nad

Latency of Macro Synchronous Micro Asynchronous Pipeline

nad nad

Publications

  1. F. K. Lodhi, O. Hasan, S. R. Hasan and F. Awwad, “Low Power Soft Error Tolerant Macro Synchronous Micro Asynchronous (MSMA) Pipeline,” IEEE Computer Society Annual Symposium on VLSI (ISVLSI 2014), July 2014, pp. 601 – 606.