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ABSTRACT 
Approximate circuits exploit error resilience property of 
applications to tradeoff computation quality (accuracy) for 
gaining advantage in terms of performance, power, and/or area. 
While state-of-the-art low-latency approximate adders provide 
an accuracy-area-latency configurable design space, the selection 
of a particular configuration from the design space is still 
manually done. In this paper, we analytically analyze different 
structural properties of low-latency approximate adders to 
formulate a new adder model, Quality-area optimal Low-Latency 
approximate Adder (QuAd). It provides an increased design 
space as compared to state-of-the-art, providing design points 
that require less logic area for the same accuracy, as compared to 
state-of-the-art approximate adders. Furthermore, based upon 
our mathematical analysis, we show that, provided a latency 
constraint, an adder configuration with the highest quality and 
lowest area requirement can effortlessly be selected from the 
whole design space of QuAd adder model, without requiring any 
optimization strategy or numerical simulation. Our experimental 
results validate the developed model and also the quality-area 
optimality of our optimal QuAd adder configuration. For 
functional verification and prototyping, we have used a Xilinx 
Virtex-6 FPGA. RTL/behavioral models and MATLAB equivalent 
scripts, of our proposed adder model are made open source, to 
facilitate further research and development. 

1 INTRODUCTION  AND RELATED WORK 
Approximate Computing is an evolving computing paradigm 

that relies on trading-off the computational quality (accuracy) to 
provide new opportunities for improving the area, power, and 
performance efficiency of systems. Recent, investigations by 
Intel [1], IBM [2], Microsoft [3][4], and other research groups [5] 
have shown that there indeed exists a number of compute-
intensive applications that can tolerate approximation errors 
while still producing outputs that are useful and of acceptable 
quality for the end-users[12]. Particularly, applications such as 
image/video/vision processing, machine/deep learning, big data 
analytics, recognition, web searches and signal processing, are 
either inherently prone to noise or are resilient to error because 
of the perceptual limitations of the end-users and hence are 

natural candidates for approximate computing. 
Adders are one of the fundamental arithmetic units and have 

gained significant attention from the approximate computing 
community [6]-[11][16]. Carry computation typically forms the 
critical path for an N-bit two-operand adder. Most state-of-the-
art low-latency approximate adders (such as, ACA [6][7], ETA, 
ETA-II, ETA-IIM [9], GDA [8], ESA [16], and GeAr [10]) rely on 
the observation that in most cases the longest carry propagation 
chain is less than the complete length (N) of the adder. Thus, the 
approximate designs reduce this critical path by employing 
multiple smaller disjoint or overlapping L-bit sub-adders (with 
L<N). Thereby achieves reduced latency at the cost of increased 
area (in case of overlapping sub-adders). Each sub-adder is 
composed of two types of bits, the Resultant bits (R bits) which 
produces sum bits that contribute to the final summation and 
Prediction bits (P bits) that utilized P previous bits for predicting 
carry for R bits. Only for the first sub-adder, all the bits are 
considered as R bits since carry-in is generally known. ACA-I [6] 
employed the use of multiple overlapping fixed-length sub-
adders with R=1. ETAII [9] made use of the carry generated by 
the carry prediction unit of one previous sub-adder for 
predicting the carry-in of current sub-adder, thus R=P. ETAIIM 
[9] allowed the concatenation of carry prediction logic of any, 
but not the least significant sub-adder, to increase the accuracy. 
In ACA-II [7], the length of R for each sub-adder was set to half 
of sub-adder length, L. GDA [8] provided a configurable 
approximate adder that used multiple non-overlapping sub-
adders of length R and used multiplexers for carry selection from 
either the previous sub-adder or from the carry-in prediction 
block. Thus, for any sub-adder the number of prediction bits 
were a multiple of R. GeAr [10] provided a unified design space 
by providing a configurable approximate adder along with its 
associated error probability model. GeAr adder model allows any 
combination for R and P, provided the length of sub-adder (L = 
R+P) is uniform throughout the adder and thereby covers many 
low-latency adders like ESA [16], ACA[6][7], etc. Furthermore, 
all sub-adders must have the same value for R and P. The 
aforementioned condition limits the number of possible 
configurations that can be realized using the GeAr adder. 

Limitations of State -of-the-Ar t: It is noteworthy that in all 
of these approximate adders, their design imposes some specific 
restriction on the length of sub-adders, the number of sum bits 
that each sub-adder produces, and/or the number of carry 
prediction bits it utilizes for the generation of the sum bits. Due 
to these restrictions, the design space of such low-latency 
approximate adders overlooks several configurations, which may 
require lower logic area for the same accuracy, i.e., the real 
Pareto-optimal points in the design space. 

Motivational Analysis:  Consider an example where we 
would like to develop an 8-bit approximate adder and the 
maximum allowed latency is equivalent to that of a 7-bit Ripple 
Carry Adder (RCA) based sub-adder. Fig. 1 presents the values of 
the Accuracy-per-Area (denoted as Accuracy/Area) metric, for 
the complete design space, plotted against Accuracy, assuming 
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linear dependency of logic area on the sub-adderủs length. Here, 
accuracy is computed as 1-Normalized Error Distance (NED). 

 

Figure 1. Design Space of an 8-bit approximate adder using 
sub-adders of length less than or equal to 7 -bits 

Fig. 1 provides the configurations supported by the state-of-
the-art adders (represented by ỪƷừ) including GeAr, ETA and 
GDA. Fig. 1 also provides adder configurations (represented by 
Ừxừ) that are still not supported by any of these prior adder 
configurations. This include combinations, such as sub-adders of 
varying sizes and/or other arbitrary combinations of R and P bits 
for each sub-adder. It can also be observed that these missing 
design configurations may provide design points that require 
less logic area while providing similar accuracy level as that of 
state-of-the-art.  

Required: Thus, an adder model is required that is able to 
provide an enhanced design space, which includes the adder 
configuration with the optimal Accuracy-per-Area value for a 
particular latency constraint. Furthermore, the extended design 
space requires a technique to select an optimal configuration, 
which meets the latency requirement, provides maximum 
accuracy and still requires the least logic area. 

Novel Contributions in a Nutshell:  In this paper, we 
present QuAd: A Quality-Area optimal Low-Latency 
Approximate Adder model and its corresponding mathematical 
analysis that:  
1. Allows using sub-adder units of varying lengths with 

arbitrary combinations of resultant and prediction bits. The 
extended design space not only includes all of the available 
low-latency adders but it further provides new Pareto-
optimal design points. 

2. Provides an analytic solution to find a quality-area optimal 
approximate adder configuration while assuming inputs to 
be independent and uniformly distributed, given a user-/ 
designer-provided latency constraint. 

2 QUAD: A QUALITY -AREA OPTIMAL LOW -
LATENCY APPROXIMATE ADDER MODEL 

For our QuAd model, each sub-adder can have any number of 
Prediction (ὖ) and Resultant (Ὑ) bits, regardless of the number of 
ὖ and Ὑ bits in other sub-adders. An ὔ bit QuAd adder 
comprising Ὧ sub-adders is, therefore, defined using a resultant 
vector, Ὑ Ὑȟ ὙȟȣȟὙ  and a prediction vector,ὖ
ὖȟὖȟȣȟὖ  where, Ὑ and ὖ  ᶅὭɴ ρȟςȟσȟȣȟὯ) represent the 

number of resultant and prediction bits in the Ὥ  sub-adder, 
respectively. The resultant bits from each sub-adder constitute 
the ὔ bit output of the adder, hence ὔ В Ὑ. Thus, the 
generic QuAd representation, 
ὗόὃὨὙȟὙȟȣȟὙ ȟὖȟὖȟȣȟὖ  completely specifies any 
possible adder configuration. Fig. 2 shows a generic 
representation of an ὔ-bit QuAd adder and a constituent ith sub-
adder unit. The first sub-adder does not require any prediction 
bits, i.e. ὖ π. 

Unlike earlier adder models, Ὑ can take any value between 1 
to (ὔ В Ὑ). While ὖ can theoretically take any value 

between 0 to В Ὑ, we propose to restrict ὖ such that ὖ
Ὑ ὖ , i.e., the number of prediction bits in Ὥ  sub-adder 
should be less than the length of Ὥ ρ  sub-adder. While this 
may appear to be a restriction on ὖ we show that the 
corresponding configurations with ὖ Ὑ ὖ  or ὖ
Ὑ ὖ  require more area than the case when ὖ Ὑ
ὖ  while providing equal/lower accuracy measure. Below, we 
compare the Probability Mass Function (PMF) of approximation 
error for these three possibilities in order to identify such sub-
optimal configurations. 

 

Figure 2. A generic N-bit QuAd adder. Each i th  QuAd sub-
adder sums two Li-bit numbers, where the first P bits of 
both the operands are used to predict carry -in for 
computing the sum of R significant bits.  

1. ╟░ ╟░ ╡░ : Fig. 3(a) provides a configuration in 
which ὖ Ὑ ὖ and also provides its error PMF. The 
error PMF is defined as ὖ ὖὉ Ὡ  where Ὡ  is the 
error magnitude that can have any value between 0 (no 
error) to ς . For this configuration, the only possible error 
magnitude is ς ς. This is because the error occurs 
only when Ὑ ὖ  least significant bits generate a carry 
and ὖ or ὖ bits propagate it. Due to their overlapping 
structure, for ὖ to be in propagate mode, ὖ must be in 
propagate mode and hence the effective error magnitude for 
both the cases is ς.  

2. ╟░ < ╟░ ╡░ : For each configuration having ὖ
ὖ Ὑ  (for any Ὥɴ ςȟσȟȣȟὯ), there exists an alternate 
configuration in which Ὥ and Ὥ ρ  sub-adders can be 
replaced by a single sub-adder having resultant and 
prediction bits equal to Ὑ Ὑ  and ὖ , respectively. 
The resultant configuration provides equal accuracy while 
utilizing lesser area. Fig. 3(b) provides such an alternative 
configuration for that of Fig. 3(a). Despite using lesser total 
bits for prediction, and hence requiring lesser logic area, the 
associated ὖ is identical. 

3. ╟░ > ╟░ ╡░ : Fig. 3(c) illustrates an instance where the 
propagation bits of the Ὥ  sub-adder are extended even 
beyond the length of Ὥ ρ  sub-adder. In this particular 
case; another error term with a magnitude of  
ȿς ς ȿ is introduced in ὖ due to the case when 
first ὖ Ὑ ὖ  bits of ὖ are in generate mode while 
the rest of its bits are in propagate mode.   

The loss in accuracy experienced in the configuration of Fig. 
3(c) as compared with that of Fig. 3(a), is due to the lower 
number of bits being used for the prediction of carry-in for Ὑ 
bits. Therefore, 
a. the configurations with ὖ  ὖ Ὑ  provide better 

accuracy as compared to similar configurations with ὖ > 
ὖ Ὑ ; and 
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b. the configurations with ὖ < ὖ Ὑ  provide better 
accuracy as compared to similar configurations with ὖ = 
ὖ Ὑ , while requiring lesser logic area.  

In summary , the configurations, with  
ὖ ὖ Ὑ  for any Ὥɴ ςȟσȟȣȟὯ, can be eliminated based 
on the fact that there is an alternative configuration (with ὖ
Ὑ ὖ ), which generates better/equivalent results while 
utilizing lesser amount of resources. We eventually propose that 
in QuAd, ὖ Ὑ ὖ . 

2.1 Quality -Area Optimal QuAd adder 
configuration  

Provided a latency constraint in terms of maximum allowed 
sub-adder length, ὒ , we define, ὗόὃὨὔȟὒ , i.e., an N-
bit Quality-Area Optimal adder configuration that provides the 
highest accuracy while requiring least logic area, from among 
the complete QuAd design space. We use two metrics, i.e., Mean 
Square Error (MSE) and Mean Error Distance (MED), to measure 
the accuracy. The reasons of selecting these metrics are: (a) MSE 
is a standard quality metric for many multimedia applications 
[14] and is inversely proportional to Peak signal-to-noise ratio 
(PSNR), which is another widely used quality metric; and (b) 
MED is considered as an effective measure for computing the 
accuracy of a multi-bit approximate adder [13].  

 

  

(a)QuAd 4ȟ2ȟ2ȟ0ȟ2ȟ4  

  

(b) QuAd 4ȟ4ȟ0ȟ2  

  

(c) QuAd 4ȟ2ȟ2ȟ0ȟ1ȟ4  

Figure 3. Architectural design of the three possible types 
of configurations along with their respective error PMFs.  

In the following, we present two key properties and their 
proofs, which will facilitate our ὗόὃὨὔȟὒ  adder design. It 
is noteworthy that these properties are also valid for state-of-
the-art low-latency approximate adders since our QuAdủs design 
space includes all of their configurations.  

Property-I: For the most significant sub-adder, the 
configurations with the least number of P bits and maximum 
possible sub-adder length, provides lower values for MSE and 
MED. 

Fig. 4(a) shows an N-bit low-latency approximate adder built 
using two sub-adders. The associated MED and MSE are given 
by: 

ὓὉὈ ὖὉ Ὁz 

ὓὛὉ ὖὉ ᶻὉ  

Here, ὖὉ  is the probability of error while Ὁ
ȿὠὥὰόὩ ὠὥὰόὩ ȿ is the error magnitude. Subscript 

Ừ1ừ refers to the configuration 1 of Fig. 4 for ease of reference. 
The error probability associated with this configuration can be 
defined as the probability with which Ὑ ὖ  least significant 
bits generates a carry and rest of the bits corresponding to ὖ 
bits propagates it. Assuming, inputs with uniform distribution, 
the probability can mathematically be given as: 

ὖὉ ”ὴὶ Вz ”Ὣὶz ”ὴὶ  

Here, ”Ὣὶ ὖὥ ρ Ǫ ὦ ρ and ”ὴὶ ὖ ὥ
ρ Ǫ ὦ π έὶ ὥ π Ǫ ὦ ρ  defines the probability of 
carry generation and carry propagation respectively (ὥ and ὦ 
are the Ὥ  bits of operands A and B respectively). The magnitude 
of error in the representative configuration of Fig. 4(a) is 
equivalent to the magnitude of carry-out from the first sub-adder 
and hence Ὁ ς . Thus,  

ὓὉὈ ς ”zὴὶ Вz ”Ὣὶz ”ὴὶ  

 ὓὛὉ ς ”zὴὶ Вz ”Ὣὶz ”ὴὶ 

  
(a) Configuration I:  
QuAd{6ȟ5ȟ0ȟ4} 

(b) Configuration II:  
QuAd{5ȟ6ȟ0ȟ3} 

Figure 4. Structural comparison of two alternate QuAd 
configurations  

Now, if we amend the configuration of Fig. 4(a) by decreasing 
the P bits of most significant sub-adder by 1, while keeping its 
width fixed, we get the configuration of QuAd{υȟφȟπȟσ} Fig. 
4(b).  The decreased number of P bits results in an increase in the 
probability of error while reducing the magnitude of the error by 
the same ratio for uniformly distributed inputs. The ὖὉ and Ὁ 
for this 2nd configuration (in terms of the variables of 1st 
configuration) are given by: 

ὖὉ ”ὴὶ Вz ”Ὣὶz ”ὴὶ  

Ὁ ς  

Similarly, the MED and MSE for this new configuration is 
given by: 

ὓὉὈ ς ”zὴὶ Вz ”Ὣὶz ”ὴὶ  

ᶻ
  

ὓὛὉ ς ”zὴὶ Вz ”Ὣὶz ”ὴὶ   

ᶻ
  

Assuming a uniform input distribution, MED1 is equivalent to 
MED2 since ςz ”ὴὶ ρ. However, the MSE of the altered 
configuration is half of ὓὛὉ. Similarly, If we keep on 
decreasing the P bits of the most significant adder, we keep on 
getting a configuration with lower MSE and same MED. 
Furthermore, lower prediction bits means lower overlap and 
hence lower area requirement as evident from Fig. 4. Also, using 
the aforementioned equations, it can be concluded that the 
configurations having larger most significant sub-adders show 
lower MSE and MED values. Thus, a QuAd configuration with Pk 
= 0 and Rk=Lmax, shall provide the lowest MSE and MED with least 
area requirement. 

Property-II:  MSE and MED are irrespective to the 
configuration of remaining (N-ὒ ) least significant bits. 
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The previous property dictated that, in case of an 
approximate adder composed of two sub-adders, minimum MSE 
and MED is achieved when a non-overlapping Lmax-bit sub-adder 
is used at most significant location, i.e. Rk=Lmax and Pk=0, while 
using an accurate sub-adder at the least significant location. 
Using the configurations of Fig. 5, we show that the 
decomposition of the least significant sub-adder into further 
non-overlapping sub-adders has no effect on the overall MSE 
and MED of the approximate adder. 

The P[E], E, MED and MSE for Configuration 3, Fig. 5(a), are 
given as:  

ὖὉ В ”Ὣὶz ”ὴὶ  

Ὁ ς   

ὓὉὈ ς Вz ”Ὣὶz ”ὴὶ  

╜╢╔ ╡ Вz ⱬ▌►z ⱬ▬►░
╡
░   (1) 

 

 
(a) Configuration III: 
QuAd R1ȟR2ȟ0ȟ0  

(b) Configuration IV: 
QuAd R11ȟR12ȟR2ȟ0ȟ0ȟ0  

Figure 5. Structural comparison of two alternate QuAd 
configurations  

Fig. 5(b) provides a case where the least significant sub-adder 
of Configuration 3 is sub-divided into two sub-adders, s1 and s2, 
with lengths equal to Ὑ  and Ὑ  bits, respectively. The 
probability with which these sub-adders induce error in the 
output can be given by: 

ὖ В ”Ὣὶz ”ὴὶ  

ὖ В ”Ὣὶz ”ὴὶ  

Note that, ὖ  and ὖ  is equal to the probability of carry-out 
of s1 and s2, respectively. Since, there are multiple sub-adders, 
there are multiple possible error magnitude values. The 
probability of these error magnitudes is provided in Table 1. 

Table 1: Probability of error P[E] 4  

Magnitude of Error  Probability  

ς  ὖ ὖ ὖz  

ς  ὖ ὖ ὖz  

ς ς  ὖ ὖz  

 
The MED can be expressed using these probabilities as 

follows 

ὓὉὈ ὖ ὖ ὖz ςz  ὖ ὖ ὖz ςz
 ὖ ὖz ᶻς ς  

╜╔╓  ╟▼ ᶻ
╡ ╟▼ ᶻ

╡ ╡    (2) 

We multiply the first term in the above equation by ς ᶻ
”ὴὶ . This does not violate the equation since ς ”zὴὶ  
is equivalent to 1 for uniform distribution as ”ὴὶ πȢυ. So, 

ὓὉὈ ὖ ςz ”zὴὶ ςz ὖ ςz  

ὓὉὈ ς ᶻὖ ”zὴὶ ὖ  

which is equivalent to the MED3, since Ὑ Ὑ Ὑ  and, 

ὖ ”zὴὶ ὖ   
”ὴὶ Вz ”Ὣὶz ”ὴὶ В ”Ὣὶz ”ὴὶ   

В ”Ὣὶz ”ὴὶ В ”Ὣὶz ”ὴὶ  

В ⱬ▌►z ⱬ▬►░
╡
░     (3) 

Similarly, the MSE of Fig. 5(b) can be defined utilizing Table 1 
as: 

ὓὛὉ ὖ ὖ ὖz ςz  ὖ ὖ ὖz ᶻ
                   ς  ὖ ὖz ᶻς ς   (4) 

By expanding ς ς  

ὓὛὉ  ὖ ςz ὖ ςz  ὖ ὖz
 zςz ς ςz   

Taking ὖ ”zὴὶ ςz  common from the last 
two terms we get: 

ὓὛὉ ὖ ςz ὖ ”zὴὶ ςz ᶻ

                
ᶻ

ᶻ

ᶻ
  

As for the uniform input distribution ”ὴὶ ςz ρ, the 
aforementioned equation can be simplified to: 

╜╢╔ ╟▼ ᶻ
╡ ╡ ╟▼ ⱬz▬►╡ ᶻ ╡ ╡ ᶻ

                 ╡ ╟z▼      (5) 

Now, for uniform distribution, ὖ  can be expanded as: 

╟▼ В ⱬ▌►z ⱬ▬►░
╡
░ Ễ ╡

      (6) 

Substituting ὖ  from (6) in the last terms of (5), we get: 

╜╢╔ ╟▼ ᶻ
╡ ╡ ╟▼ ⱬz▬►╡ ᶻ ╡ ╡ ᶻ

╡ ᶻ Ễ ╡     (7) 

Noting that, ςz ρ Ễ ρ, 

and further simplifying (7), we get: 

╜╢╔ ╡ ╡ ᶻ╟▼ ╟▼ ⱬz▬►╡   (8) 

Substituting the 2nd term in (8) using (3), and noting that 
Ὑ Ὑ Ὑ , we prove that (8)  is equivalent to (1), therefore, 
the configurations of Fig. 5(a) and Fig. 5(b) have equal MSE and 
MED measures. 

Summarizing,  from property I, we know that, in order to 
get minimum MED and MSE while utilizing minimum area we 
can divide an adder into two non-overlapping sub-adders, i.e., 
the most significant sub-adder and least significant sub-adder, 
where the length of the most significant sub-adder should be 
equal to ὒ . With the help of property-II, we can further sub-
divide the least significant sub-adder into multiple sub-adders of 
length less than or equal to ὒ  without affecting the overall 
MED, MSE, and area. We further propose to use such a 
configuration that provides the least value for maximum error 
magnitude, ὓὥὼ. For the case of configurations with disjoint 
non-overlapping sub adders, the maximum error occurs when 
carry is generated from all the (k-1) least significant sub-adders 
and is given by: 

ὓὥὼ В ςͮ В Ὑ   



ὓὥὼ is minimum when there are fewest possible sub-adders 
of maximum length, placed at most significant locations, since, 

 В ςͮ В Ὑ  В ςͮ В Ὑ  Ὢέὶ ὥὲώ ὓ ὔ (9) 

Therefore, we define our latency-constrained, quality-area 
optimal adder, ὗόὃὨὔȟὒ  as: 

ὗόὃὨὔȟὒ ὗόὃὨὔϷὒ ȟὒ ȢȢȟὒ ȟπȟȣȟπ  

Fig. 6 illustrates the ὗόὃὨὔȟὒ  configuration for 
various values of N and Lmax.  As suggested by our mathematical 
analysis and later confirmed by our experimental 
results, ὗόὃὨὔȟὒ  always provides a configuration with 
minimum MSE, MED and ὓὥὼ from among the complete QuAd 
design space. 

 

Figure 6: ἝἽἋἬἷ configurations for 11, 16 and 8 bit 
approximate adders for multiple Lmax values. 

3 RESULTS AND DISCUSSION 
We compare the extended design space of the proposed 

QuAd adder model to that of the state-of-the-art approximate 
adders. We show that our optimized  ὗόὃὨὔȟὒ  adder 
indeed provides a quality-area optimal adder configuration for a 
given latency constraint. The area and latency results for adder 
configurations are obtained by synthesizing their VERILOG 
models for XILINX Virtex 6 XC6VLX75T FPGA using Xilinx ISE. 
Sub-adders were implemented using the Ripple Carry Adder 
(RCA) since current FPGAs use dedicated carry chains for their 
efficient implementation. However, note that our QuAd model is 
not specific to any particular sub-adder implementation. Thus, 
unlike FPGAs if for an ASIC implementation an n-bit CLA is 
considered faster as compared to an RCA, sub-adder unit of the 
GeAr may comprise a CLA. Similarly, for FPGAs, LUT based fast 
adders such as [15]. Functional models for QuAd are also 
developed in MATLAB to compute accuracy values (MSE, MED) 
by exhaustive simulations and to evaluate performance in real 
applications. We have made these RTL and MATLAB 
implementations open source at 
https://sourceforge.net/projects/quad-code/ for reproducibility of 
results and to facilitate further research and development in this 
domain. 

3.1 Design Space Coverage 
Fig. 7 compares the quality (MED)-area design space of an  

8-bit QuAd adder model to that of the combined design space of 
state-of-the-art adders, including GeAr [10], ETA-II [9], ETA-IIM 
[9], GDA [8], ACA [6][7], ACAA, and ESA [16] for various ὒ  
values. Fig. 7 demonstrates that the QuAd adder not only covers 
the configurations of state-of-the-art low-latency adders but also 
provides further configurations that utilize lesser area while 
providing better/same error measures.  

Fig. 7 further supports our mathematical analysis of Section II 
that for each ὒ  there exists QuAd configurations  
(with ὖ Ὑ ὖ )  that require lesser area while providing 
lower MED as compared to the sub-optimal configurations of 
QuAd (ύὭὸὬ ὖ Ὑ ὖ ). 

 

Figure 7. Design space of an 8-bit QuAd adder for various 
Lmax values. The case of ╛□╪●  is not provided since that 
requires ╡  for all sub -adders. 

3.2 Quality -Area-Latency evaluation  
Fig. 7 also provides the design points that relate to our 

optimal adder configuration (1Õ!Ä), for each possible value 
of ὒ . It can be observed that the QuAdo configuration 
provides us with the minimum area and minimum MED for each 
case. As an example, ὗόὃὨψȟυ  and ὗόὃὨψȟφ provide 20% 
(Fig.7(d)) and 33% (Fig.7(e)) area reduction, respectively,  as 
compared to the best possible configuration provided by the 
state-of-the-art. Fig. 8 and Fig. 9 compare the Latency (ns) vs 
Quality (MSE and MED) design space of the aforementioned state-
of-the-art adders with that of QuAd adder for an 8-bit low 
latency approximate addition. It can be observed that the QuAdo 
configuration always provides an adder configuration that 
provides the lowest latency for any value of MSE or MED.  

 

Figure 8. Latency (ns) vs log10(MSE) for 8-bit QuAd 
configurations  

ὗόὃὨὔȟὒ ) utilizes multiple non-overlapping sub-
adders, each with length  ὒ , to provide a configuration that is 
optimal in terms of MSE, MED. Note that in Fig. 8 and Fig. 9 
there are a few other configurations of QuAd adder that 
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Fig. 1: Design space of an 8-bit QuAd adder for various Lmax values 
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https://sourceforge.net/projects/quad-code/



