
Formal Probabilistic Analysis of a Virtual
Fixture Control Algorithm for a Surgical Robot

Muhammad Saad Ayub and Osman Hasan

School of Electrical Engineering and Computer Science (SEECS)
National University of Sciences and Technology (NUST), Islamabad, Pakistan

{saad.ayub,osman.hasan}@seecs.nust.edu.pk

Abstract. With the ever-growing interest in the usage of minimally-
invasive surgery, surgical robots are also being extensively used in the
operation theaters. Given the safety-critical nature of these surgeries,
ensuring the accuracy and safety of the control algorithms of these sur-
gical robots is an absolute requirement. However, traditionally these al-
gorithms have been analyzed using simulations and testing methods,
which provide in-complete and approximate analysis results due to their
inherent sampling-based nature. We propose to use probabilistic model
checking, which is a formal verification method for quantitative analysis
of systems, to verify the control algorithms of surgical robots.The paper
provides a formal analysis of a virtual fixture control algorithm, imple-
mented in a neuro-surgical robot, using the PRISM model checker. We
have been able to verify some probabilistic properties about the out-of-
boundary problem for the given algorithm and found some new insights,
which were not gained in a previous attempt of using formal methods in
the same context. For validation, we have also done some experiments
by running the considered algorithm on the Al-Zahrawi surgical robot.

Keywords: Probabilistic Model Checking, PRISM, Surgical Robotics.

1 Introduction

Minimal-invasive surgery (MIS) [16] is a surgical procedure in which a laparo-
scope (a thin lighted tube), along with a high resolution camera, and other
surgical instruments are inserted into the human body through small incisions
rather than a relatively larger incision commonly used in the traditional open
surgeries. The internal operating field is then visualized on a video monitor con-
nected to the scope. MIS has become quite popular these days as it facilitates
quick patient recovery and has less chances of post-operative infections. How-
ever, these added benefits come at the cost of highly precise movements required
by the surgeons in the confined space provided. Robotic arms and hands have
a high degree of dexterity and thus are playing a promising role in facilitating
surgeons for operating in very tight spaces in the body that would otherwise
only be accessible through open (long incision) surgery. Operations relevant to
microanatomy and neuro-endoscopy are specifically performed through robotic-
assisted MIS because of the static nature of human skull. Moreover, treating the

2

brain tumor via small hole surgery and precise robotic arms also reduces the risk
of damaging the brain tissue overlying the tumor.

Despite the extreme precision of surgical robots, these man-made machines
have their own inherent inaccuracies. There is always a risk that these robotic
arms may go out of control and damage other organs instead of working in the
surgical area. This problem is termed as the out-of-boundary problem. As these
robots are operated by humans via a software interface, so the substantial loss
of force feedback (haptics) and a lack of adaptability are the most common risk
factors that lead to the out-of-boundary problem [12]. These issues may lead
to life threatening situations[10]. The conventional approach to test the out-
of-boundary problem is by manually operating the robot. The more the user
operates the robot, the more are the chances of finding errors but this method is
very time consuming and it also does not ensure a reliable system behavior for
all possible scenarios. The other most commonly used analysis method for find-
ing the out-of-bound errors is computer simulation [24], where a computer-based
model of the robot is tested systematically but this method is very expensive in
terms of computational resources and memory, due to the continuous and ran-
domized nature of the problem. Moreover, it is also not possible to simulate each
and every case for success and failure and thus most of the times an incomplete
analysis is done by leaving a significant number of test cases.

Formal verification methods [8], i.e., computer-based methods for mathe-
matical analysis for systems, have been used to overcome the above-mentioned
inaccuracy limitations for many hardware and software systems. Model checking
[8] is based on state-space exploration methods and is one of the most widely
used formal methods. The system under verification is mathematically modeled
as state-transition system. This model is then used within a computer to auto-
matically verify that it meets rigorous specifications of intended behavior [8].

We propose to conduct the formal analysis of control algorithms used in
surgical robots using probabilistic model checking. The proposed framework al-
lows us to capture the uncertainties of the real-world scenarios using Marko-
vian models and verify probabilistic properties within the sound environment of
a probabilistic model checker. The quantitative information provided by these
probabilistic properties can play a vital role in designing safer and more per-
formance efficient surgical robots. In particular, the paper provides the formal
probabilistic verification of a control algorithm for the neuro-mate robot that is
used to perform skull surgeries[24]. We verified the deadlock freedom, reacha-
bility, out-of-boundary and collision freeness properties. Moreover, we validated
our results by conducting real experiments on the Al-Zahrawi robot [9].

2 Related Work

Given the safety-critical nature of robotic applications, formal verification meth-
ods have been widely used to conduct their analysis. For example, Mikaël [17]
used probabilistic model checking to verify the flexibility property of swarm
robots in a collective foraging scenario. Kim et al. [11] developed the discrete

3

control software of the Samsung’s home robot (SHR) using Esterel and used the
XEVE model checker to verify the stopping behavior of SHR. Webster et al. [23]
verified the autonomous decision making system of a personal home robot using
the SPIN model checker. Scherer et al. [22] built a method for the verification of
robotic control software based on the Java path finder. They verified the safety
and liveness properties for a line following robot. Model checking has also been
used to verify the motion planning algorithms of various robots. Lahijanian et
al. [14] verified the probability of the robot reaching its destination via a safe
path. Similarly, Fainekos et al. [4] addressed the problem of generating contin-
uous trajectories for mobile robots while satisfying formulas in temporal logic
using the NuSMV model checker. Saberi et al. [21] used the mCRL2 language
[6] to create a formal model for a multi-robot system by creating different com-
municating processes and the Modal u-calculus [5] to formally specify deadlock
freedom, collision-freeness and the reachability properties. Li [15] used the HOL4
theorem prover to verify the collision freeness property for collision-free motion
planning algorithm (CFMC) of a dual-arm robot.

In the context of surgical robotics, Bresolin et al. [3] used hybrid automata
[1] to formalize an autonomous surgical robot and analyzed the surgical task
of puncturing, i.e., the method of piercing a biological tissue with the help of
a needle. Similarly, a formal modeling and verification approach for the virtual
fixture control algorithm for a surgical robot has been reported in [12]. The
authors used a hybrid logic, i.e., differential dynamic logic and quantified differ-
ential dynamic logic to model the system and verify it using the KeymaeraD [19]
theorem prover. They showed that the algorithm is unsafe and modified it to
satisfy safe operation. This work modeled and analyzed the real-time dynamics
of the system quite well but ignored the randomized aspects, such as the input
from the surgeon (force exerted and direction of motion). The main focus of
the current paper is to overcome this gap and provide quantitative information
about the formally verified properties of control algorithm of surgical robots.

3 Preliminaries

This section gives a general overview of probabilistic model checking and the
virtual fixture based control algorithm that is formally verified in the paper.

3.1 Probabilistic Model Checking and PRISM

Probabilistic Model Checking [18] is used for the formal analysis of systems that
exhibit random behavior and thus can be represented as Markov chains [13].
The probabilistic behavior of systems can be captured via discrete-time Markov
chains (DTMCs), continuous-time Markov chains (CTMCs), Markov decision
processes (MDPs) and probabilistic timed automata (PTAs) [18]. Once the
Markovian model of the system under verification is finalized, then the prob-
abilistic properties of the system are formally specified. The commonly used
specification language for probabilistic model checking is Probabilistic Linear

4

Temporal Logic (PLTL). The model and property of the system, expressed in the
language of the probabilistic model checker, is then given to the model checker.
The tool explores the model exhaustively to check all possible executions and
the probabilistic queries are solved through numerical methods [18].

PRISM [13] is a widely used probabilistic model checker that supports DTMCs,
CTMCs, MDPs and PTAs. It allows describing the probabilistic behavior of
the given system using the reactive modules formalism [2]. PRISM incorporates
state-of-the-art symbolic data structures and algorithms, based on Binary De-
cision Diagrams (BDDs) and Multi-Terminal Binary Decision Diagrams (MTB-
DDs), and its discrete-event based simulation engine provides support for statis-
tical model checking. The components of the given distributed system are mod-
eled as modules, which can either be synchronous or asynchronous in nature.
Each module mainly consists of variables and commands. The variables describe
the possible states that the module can be in and the commands describe its be-
haviour, i.e., the way in which the state changes over time. Variables in PRISM
can be declared both globally and locally. PRISM supports (finite ranges of)
integer or Boolean as data-types. Moreover, multiple instances of modules can
also be instantiated. Verification properties are expressed in PRISM using the
probabilistic computation tree logic (PCTL). Once a property is formulated,
then the PRISM tool automatically verifies that the property conforms to the
model or not. The verification results can also be logged and plotted [13].

3.2 Virtual Fixture Control Algorithm for Surgical Robots

Surgeries are usually conducted in a specific zone, which is identified for the
surgical robot using a virtual boundary, usually known as the virtual fixture
[20]. With the aid of these virtual fixtures, the robot manipulator is guided to
move within the specified region [24]. A surgeon describes the operating volume
by a series of planes oriented and positioned in space. These planar boundaries
are divided into three zones [12, 24]: Safe zone is safe for the movement of robot.
Forbidden zone is out-of-bound for the robot. Slow zone is the region between
the safe and the forbidden zones where the movement is somewhat restricted.

The control algorithm exhibits different behaviors in the above-mentioned
zones. In the safe zone, the controller allows the robot to move freely. In the
slow zone, as the boundary of the forbidden zone approaches, the controller
increases the resistance for movement while alarming the surgeon that she is
getting closer to the boundary and also prevents the robot from crossing it [12].
The equation governing the control circuit in this region is as follows

p′ = K(p)G(f)f (1)

Where overbars indicate vectors and the prime (′) indicates a derivative with
respect to time. p is the position and p′ is the velocity of the tip of the surgical
tool attached to the robot. f is the force applied by the surgeon on the robot
manipulator. G is the scaling factor, which controls the precision of the tool tip.
The value of G should be high when the surgeon desires to have flexibility to

5

move rapidly and should be low when fine movements are required. K is the
gain term, which is used to impose motion constraints on the tool . It is taken as
an identify matrix in the safe zone and zero in the forbidden zone, respectively.
Whereas in the slow zone, K is chosen such that the velocity is scaled down
by a factor proportional to the distance of tool from the forbidden zone. The
behavior of K can be abstracted as the following equation:

K =
d

D
(2)

Where d is the distance of the tool from the forbidden zone boundary at any
instant and D is the width of the slow zone region. The equation 1 works fine
in preventing the tool from crossing the safety boundary but once the tool is in
the slow zone, it attenuates motion in all the directions. Therefore the equation
was modified so that once the tool enters the slow zone, the control algorithm
restricts the movement of the tool in the direction of the forbidden region and
allows free movement in the direction opposite to the forbidden region. This
behavior is implemented using the following equation where n1 is unit normal
to the boundary.

p′ = p′ − (1− d

D
)(p′.n1)n1 (3)

The purpose of this paper is to verify probabilistic properties related to the
above equation using probabilistic model checking.

4 Formalization of the Virtual Fixture Algorithm using
the PRISM Language

The first step in modeling the given virtual fixture algorithm, explained in Sec-
tion 3.3, is the translation of Equations (1) and (3). After some arithmetic sim-
plification and decomposing the force and velocity into the Cartesian plane, we
obtain the following equations:

px = G(
dx

Dx
)fx, py = G(

dy

Dy
)fy, pz = G(

dz

Dz
)fz (4)

The second step is to develop a model for the control algorithm. We have
chosen to model the given algorithm as a DTMC. The virtual fixtures are defined
using the Cartesian plane, where the origin is taken as the center point of the
safe zone as the surgeon is quite likely to start from the center. Considering the
Cartesian coordinates, the boundaries for each plane may lie on the positive axis
or the negative axis. Thus for each plane, we defined four boundaries, i.e., two for
the safe zone and the other two for the forbidden zone. The movement of the tool
in the virtual fixture is modeled using a grid of blocks, which represent 1 unit
of movement. The distance of the tool from the boundary and the boundaries of
the safe and the forbidden zones are thus determined by the number of blocks
on the grid as illustrated in Figure 1 for a 45x45 grid.

The scaling factor G in Equation 4 is responsible for translating the force
applied by the surgeon to the velocity of the tool. It depends on the virtual

6

fixture area and the force applied by the surgeon. If the area of operation is
small then the scaling factor is kept small so that a sudden force applied by
the surgeon is not completely translated into tool velocity. The scaling factor
changes with the amount of force or movement applied by the surgeon on the
control stick. As the maximum force applied is limited by the movement of
the control stick due to mechanical constraints, the scaling factor is responsible
generating variable velocities for movement of the operating tool. In our model,
the scaling factor is taken as a constant since the area of the robot is fixed
and the force applied by the surgeon is non-deterministic and not limited by
mechanical constraints. The model consists of three main components: the force

Fig. 1. Virtual Fixture Zones

module that is responsible for generating the force applied by the surgeon and
the velocity translation module that converts the force applied by the surgeon
into the tool velocity. It is also responsible for introducing the damping factor in
the velocity. The position update block changes the current position of the tool
based on the velocity and previous position and also checks the boundaries of
operation. The modules are implemented as Finite State Machines (FSM) with
augmented probabilities. The environment is modelled by defining the bounds
of all the zones as shown in Figure 1. Data Sharing among various modules of
the Control Algorithm is done via variables created in each module.

4.1 Force Module

The force module captures the behavior of the interaction of the surgeon with
the system, which includes the behavior of the force applied by the surgeon’s
hand on the controlling tool. The force applied is further divided into three
components based on the Cartesian coordinates, i.e, fx, fy, fz. The force applied
by the surgeon is non-deterministic with probabilistic bounds, such that the
probability of the force applied by the surgeon in the direction of force applied
previously is higher than the force applied in the opposite direction. Based on
surgical statistics [7], we used a probability of 0.75 for the tool to retain the
previous direction of movement and a probability of 0.25 for a change.The force

7

f=* represent non-determinism in the case when the force is zero initially.
1 : [](f = 0)→ 1/n : f = ∗;
2 : [](f > 0)→ 0.75 : f >= 0 + 0.25 : f < 0;

3 : [](f < 0)→ 0.25 : f > 0 + 0.75 : f <= 0;

4.2 Velocity Module

The velocity module determines the instantaneous velocity of the tool using
the force exerted by the surgeon and the position of the tool. The velocity is
also divided into three components, i.e., vx, vy, vz. The control algorithm under
verification is basically modeled in this module. If the position of tool is within
the safe zone represented by sl and sh as the safe zone upper and lower limits in a
single axis, then the force applied is directly translated to velocity. If the position
of the tool is in the slow zone defined by bl and bh as the upper and lower limits
for a single axis and the force is applied in the direction of the boundary, then
the translated velocity is attenuated based on the scale factor K. If the tool
crosses the boundary of the slow zone then the velocity is completely nullified
restricting further movement in the forbidden zone.
1 : [](p > sl & p <= sh)→ (v′ = gain ∗ f);

2 : [](p <= sl & p > bl) & f <= 0→ (v′ = (dl/Dl) ∗ gain ∗ f));

3 : [](p > sh & p < bh) & f >= 0→ (v′ = (dh/Dxh) ∗ gain ∗ f));

4 : [](p <= sl & p > bl) & f > 0→ (v′ = gain ∗ f);

5 : [](p > sh & p < bh) & f < 0→ (v′ = gain ∗ f);

6 : [](p <= bl & f >= 0)→ (v′ = gain ∗ f);

7 : [](p <= bl & f < 0)→ (v′ = 0);

8 : [](p >= bh & f > 0)→ (v′ = 0);

9 : [](p >= bh & f <= 0)→ (v′ = gain ∗ f);

4.3 Position Module

The position module determines the number of blocks on the grid that the
tool will move depending on the calculated velocity. It is also divided into three
components, i.e., px, py, pz. If the position of the tool is within the limits specified
by the grid size defined by n, then the tool is allowed to move based on the
velocity. However, if it is at an edge of the grid then its movement is restricted
towards the end of grid but it is allowed to move in the opposite direction freely.
1 : [](p + v < n & v > 0)→ (p′ = P + v);

2 : [](px + v > −n & v < 0)→ (p′ = P + v);

3 : [](v = 0)|(p + v >= n)|(p + v <= (−n))→ (p′ = P);

4.4 Multiple Surgical Tools

Most of the surgical procedures involve multiple robotic arms that are inde-
pendently controlled. In order to formally model this scenario, we replicate the
above-mentioned modules for force, velocity and position and allow them to run

8

concurrently. The tool boundary limits are considered to be the same for both
tools in our model. The modules are initialized such that both tools operate
simultaneously and independently; a choice that makes collision a possibility as
well. We enhanced the control algorithm with collision avoidance capabilities by
treating the location of one tool as a forbidden zone boundary for the other and
vice versa. This will ensure that when a tool is moving towards the other tool its
velocity will be attenuated to avoid collision between the two tools. The atten-
uation will increase as the tool gets nearer to the other tool. Thus, in essence,
the main modeling concept is basically to treat the previously considered static
forbidden boundaries as dynamic ones using a module obstacle, which creates
boundary points from the other tool’s position.
1 : []ox < n & ox > −n→ (ox′ = ax1) & (oy′ = ayl);

These boundary points are then used in the velocity module as additional
boundaries for the model. The velocity module then restricts the movement of
the tool if they are moving towards the other tool by a factor M , which is the
ratio of distance between both tools and the maximum distance between both
tools. The maximum distance is computed depending on the width of the slow
zone and the distance between both tools is computed in each iteration. This
will ensure that the tools are less likely to collide with each other.

M =
dobs
Dobs

(5)

Where dobs is the distance between both tools with a maximum value of Dobs.

5 Virtual Fixture Control Algorithm

In this section, the formal model of control algorithm, described in the previ-
ous section, is verified using property specifications introduced in the proposed
methodology. We verified these properties using PRISM 4.1.2 on Windows 7 64-
bit operating system running on an Intel Core2 Quad Q9100 processor at 2.66
GHz with 4.0 GB of RAM. The grid size is taken as 45x45, the range of the
width of the slow zone is taken to be 0 to 20 and the maximum value of the
force is taken to be 6.

5.1 Deadlock Freedom

We verified the deadlock freedom of our virtual fixture control algorithm by
using the built in deadlock property of the PRISM model checker. This property
checks if for some states the transition from the present to future state will result
in a deadlock. Our algorithm was found to be deadlock free.

5.2 Reachability

This property ensures that the surgical robot will move to the position desired
by the surgeon in a finite number of steps. The presence of two robotic arms in

9

the virtual fixture makes the verification of the property quite important. The
fact that the control algorithm, under consideration, attenuates the movement
of tool, makes the verification of the reachability property very important as it
may happen that the algorithm does not allow the tool to reach some areas,
especially the ones that are very close to the boundaries where the attenuation
is the maximum. The reachability property can be verified by checking that
the tool moves from its current position and reaches the required destination in
a finite number of steps if the required force is applied to it. We verified this
property by associating a reward with every step of the algorithm, i.e., a reward
of 1 is added to the existing reward value at every step of the algorithm. The
reachability property, based on the reward accumulated along a particular path,
can now be expressed as:

R=? [px=0 & fx>0 -> F px=(width zone limit/2)-1]

This property states that if the tool position is 0 and a force is applied in
the positive direction, then the tool will eventually reach the boundary of the
forbidden zone in a bounded number of steps or rewards. The property is not
verified probabilistically as the result will not clearly depict if the tool reaches
the boundary in minimal number of steps or not, while using the reward based
approach we can ensure the tool will reach the boundary in a limited number
of steps. The property is verified for the x-plane while observing the impact of
varying the width of the slow zone. Checking this property returns the reward or
number of steps that the algorithm would take to get to the edge of the forbidden
zone. The properties for the y and z-planes are given as follows

R=? [py=0 & fy>0 -> F py=(width zone limit/2)-1]

R=? [pz=0 & fz>0 -> F pz=(width zone limit/2)-1]

Fig. 2. Impact of Changing the Width of Slow Zone on the Reachability
rewards vs width of slow zone property

These properties are verified for different widths of slow zones and the re-
sultant rewards for the x-plane, while keeping the value of the maximum force

10

constant. Figure 2 shows that the rewards calculated are always a finite number
and their value increases with the increase in the width of the slow zone. This is
because as the width increases, the distance from origin to the edges of the vir-
tual fixture increases and the steps to reach them also increase. This is because
at each step towards the boundary of the forbidden zone, the attenuation in the
velocity increases and the tool moves slowly towards the boundary, therefore,
more steps are required to cater for this attenuation. These verification results
show that the algorithm under verification satisfies the reachability property.

The properties are also verified by varying the scaling factor and Figure 2
shows the resultant rewards. It is observed that increasing the scaling factor
increases the velocity of the tool and thus the reward value decreases. This
happened because as the velocity increases the tool moves more distance in a
single iteration and thus requires less number of steps to reach the destination.

5.3 Out-of-Boundary

As described previously, the main focus of this paper is the formal probabilistic
analysis of the out-of-boundary problem. The most important aspect of any
surgical robot is to stay within the operable area at all times. If it is allowed
to move out of the operable area it may damage sensitive organs, which may
lead to the loss of human life in worst-case scenarios. The given algorithm is
therefore checked in the proposed methodology for boundary crossovers and
their probability. In the context of our modeling, the problem can be stated
as follows: At any given time during the operation, if the surgeon starts in the
safe zone then the tool should not cross the boundary of forbidden zone. This
property can be formally expressed in terms of the boundary limits defined for
our virtual fixtures. We can simply check that the position of the tool is within
these limits in every state, i.e.,

forall (px< bxh & px>bxl)

where px is the position of tool in the x-plane, bxh is the higher boundary limit
and bxl is the lower boundary limit of the slow zone. The same condition should
be checked for the y-plane and z-plane.

forall (py< byh & py>byl), forall (pz< bzh & pz>bzl)

The main issue with these properties is that they will either be True or False.
In the case of failure, we would not know the probability of failure, which is a
desirable performance characteristic as well. This limitation can be overcome by
verifying the probability of failure of this property:

P=? (px>0 & px>sxh & fx>0 => F px>bxh)

Where P is the probability of failure, sxh is the boundary of the safe zone
and fx is the force applied by the surgeon. This property checks the probability
of crossing the boundary of the forbidden zone if the tool is in the slow zone and
accelerating towards the forbidden zone. The same property can be checked for
the y-plane and z-plane as follows:

11

P=?(py>0 & py>syh & fy>0 =>F py>byh),P=?(pz>0 & pz>szh & fz>0 =>F pz>bzh)

These properties are for a boundary in the positive plane for each axis. The
corresponding properties for the negative planes are as follows:

P=?(px<0 & px<sxl & fx<0 =>F px<bxl),P=?(py<0 & py<syl & fy<0 =>F py<byl)

P=?(pz<0 & pzl<szl & fz<0 =>F pz<bzl)

The size of the virtual fixture and its boundaries have a great impact upon
the verification time and computational requirements. Therefore, in order to
avoid the state-space explosion problem, the maximum size of the virtual fixture
has to be bounded and the boundaries for the safe and forbidden zones have to
be varied accordingly.

Figure 3(a) shows the resultant probabilities computed after the verification
of the above-mentioned properties at different slow zone widths and Scaling
factor. It is seen that when the width of slow zone is increased, the probability of
the surgical tool crossing the boundary decreases (Figure 3(a)). The probabilities
change by varying the scaling factor. However, after a certain width of the slow
zone, the probabilities become constant. This happens because as the width of
the slow zone increases the chances of the surgical tool to enter the forbidden
region, due to a sudden change of the velocity in the direction of the forbidden
region, decreases. But no matter how much the width is increased, if the tool is
at the very edge of the forbidden region and sudden changes of velocity occur
in the direction of the boundary, then the tool would always cross it. Therefore,
the probability does not reach zero. This is validated by simulating the extreme
cases using PRISM. These probabilities are also found to be dependent on the
force applied by the surgeon. This shows that the algorithm will not restrict the
surgical tool from crossing the boundary if the surgeon exhibits sudden changes
near the boundary of the forbidden region. The control algorithm needs to be
updated to cater for these cases.

(a) Effects of the Slow Zone Width
on Probability of Failures

(b) Position of the
tool(Dx=20,Dy=17,Fmax=6,Fmin=-
6)

Fig. 3. Results of Verification of Out-of-Boundary Properties

Figure 3(b) shows the simulation of the virtual fixture model for a width
of 35 units for the slow zone in the x-axis and 35 units for the slow zone in

12

the y-axis and a scaling factor of 6, respectively. The results show that the
tool crosses the boundary of the forbidden zone, i.e., 35 units, in cases where
maximum force is applied towards the boundary from the very edge, whereas
the tool remains within the boundary for other cases. The results also show that
the control algorithm does not ensure complete safety of the tool, i.e., it does
not take into account the extreme cases, which results in the penetration of the
tool in the forbidden zone. Probabilistic analysis played a vital role in identifying
these extreme cases as the non-probabilistic formal techniques can only tell us
if the algorithm is safe or not.

5.4 Collision Freeness

In a laparoscopic surgical operation, more than one tool are inserted inside the
patient. The corresponding control algorithm is supposed to ensure that these
tools do not collide with each other inside the patient. Instead of formally verify-
ing the collision freeness property for the robotic arms, we verify the probability
associated with the event when the tools collide with one another. In particular,
this will compute the probability that the tools share a same grid point. This
property can be defined in the context of our model by ensuring that, at any
given time during the operation, the tools should not share the same position in
any zone. The property can be stated by considering the position of one tool as
a boundary point for other tools. For two tools, the property can be specified as

forall (px1!=px2)

where px1 and px2 are the positions of the first and second tool in the x-,
respectively. The same properties are verified for the y and z-planes.

forall (py1!=py2), forall (pz1!=pz2)

These properties result in either True or False and do not give us information
about frequency of failures. In order to find quantitative information in this
regard, we compute the probability of failure associated with these properties

P=?(px1>sxl & px1<sxh & px2>sxl & px2<sxh => F px1=!px2)

Where P is the probability of failure, px1 is the position of first tool, px2 is the
position of second tool and sxh and sxl are the upper and lower limits of virtual
fixture, respectively. This property is also checked for the y and z-plane.

P=?(py1>syl & py1<syh & py2>syl & py2<syh => F py1=!py2)

P=?(pz1>szl & pz1<szh & pz2>szl & pz2<szh => F pz1=!pz2)

The size of the virtual fixture and the force applied have a great impact on the
verification of this property. In order to avoid the state-space explosion problem,
the size of the virtual fixture is fixed and the maximum force applied is varied
by changing the scaling factor. These properties are verified for both models,
i.e., with and without obstacle avoidance algorithm, using different force limits
keeping the width of virtual fixtures and the boundaries constant.

13

Figure 4(a) shows the probabilities associated with the above-mentioned
properties when verified for the model with and without obstacle avoidance
algorithm at different scaling factors. The probability of collision for the model
without algorithm remains almost constant by varying the scaling factor as there
is no restriction on collision and changing the scaling factor will not affect the
collisions. On the other hand, for the case with the collision avoidance algorithm,
it is observed that as the scaling factor increase the probability of collision in-
creases (Figure 4(a)). This happens because the tools become more likely to
share the same grid point when the tools are near and the velocity of one of the
tool is high in the direction of the other.

Figure 4(a) clearly shows that, with the obstacle avoidance algorithm, the
probability of collision decreases but does not approach zero. The properties are
also verified for different widths of slow zones. The resultant probabilities are
shown in Figure 4(b). It is observed that the width of slow zone does not affect
the collisions of tools and the probabilities of collision are almost the same.

(a) Effect of Force on Probability of
Collision for Both Models

(b) Effect of Force on Probability
of Collision for Different Widths
of the Slow Zone

Fig. 4. Results of Verification of Collision Freeness Properties

6 Testing on Al-Zahrawi

In order to validate our verification results, we tested the considered virtual
fixture control algorithm on a minimal invasive surgery (MIS) robot Al-Zahrawi
[9], named after a renowned arab surgeon Abu al-Qasim Khalaf ibn al-Abbas
Al-Zahrawi (936-1013), who is also known as the father of modern surgery. The
Al-Zahrawi robot consists of a Master Console (MC) and Slave Console (SC) as
shown in Figure 5. The master console is used to track the force applied by the
surgeon and transfer it to the slave console. The surgeon operates the tool using
the master manipulator and a screen to display the camera output. The master
manipulator, shown in Figure 5(a), is made up of a mechanical mechanism and
optical encoders to track the movements of the hand of the surgeon. It offers 6
degree of freedom, i.e., Pitch, Yaw, Roll, back/forth and individual forceps jaw

14

open/close. The slave console, shown in Figure 5(b), is used to reproduce the
force applied by the surgeon on the patient and is mainly composed of a servo
motor based mechanical structure to replicate the movements of the surgeon’s
hand on the patient side. The slave console provides the same degrees of freedom
as the master console.

We implemented the virtual fixture based control algorithm on the Al-Zahrawi
surgical robot for our experiment. The master manipulator sets the value of at-
tenuation for the velocities based on the feedback of the positions of slave ma-
nipulators and sends them to the slave manipulator. The slave manipulator is
equipped with a clamper, which is a widely used surgical instrument. Our testbed
consists of five different positions, one at the center and four at the boundaries of
a rectangular region. In our experiment, 40 different subjects, with various levels

(a) Master Manipulator (b) Slave Manipulator

Fig. 5. Consoles of the Al-Zahrawi Surgical Robot [9]

of expertise in robotic surgery, are asked one-by-one to pick an object, placed in
the center, using the telesurgical tool and move it to any edge box and try to
place it at the center of that box. The user then picks the object and places it
in the box located at the opposite corner of the testbed.

The resultant boundary crossings of all the operators are logged and plotted
in Figure 6 for both the cases, i.e., with the virtual fixture control algorithm and
without the algorithm. The results show that the number of boundary crossings
of the robotic tool without the algorithm are much greater than the ones of with
the algorithm. They also show that the tool does cross the boundary with the
algorithm but the crossings in that case are very less compared to ones without
the algorithm. This validates our verification results, given in Section 6, stating
that the algorithm is not completely safe with respect of restricting the robot
within the operating area and crossovers will occur if significant force is applied
near the edge of the boundary.

15

Fig. 6. Experimental Results

7 Conclusions

This paper presents a formal verification technique for a virtual fixture based
control algorithm used in a surgical robot [24]. In order to consider the ran-
domized nature of the environment, such as the force, applied by the surgeon,
and its direction, we propose to use probabilistic model checking for the verifi-
cation. The main idea is to first develop a formal Discrete-Time Markov chain
(DTMC) model of the given algorithm and its environment. This model can
then be used to analyze the corresponding probabilistic properties. The paper
describes the details about modelling a well-known virtual fixture based control
algorithm and also identifies the corresponding probabilistic properties. Our re-
sults confirm that the properties of out-of-boundary are failing but under certain
conditions the probability of failure is very small, and thus it is quite safe to use
the robot under these conditions. Since traditional model checking cannot be
used to verify probabilistic properties so these insights about the safe conditions
cannot be obtained.

References

1. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.H.: Hybrid automata: An algo-
rithmic approach to the specification and verification of hybrid systems. In: Hybrid
Systems. pp. 209–229. Springer Berlin Heidelberg (1993)

2. Alur, R., Henzinger., T.A.: Reactive modules. Formal Methods in System Design
15(1), 7–48 (1999)

3. Bresolin, D., Guglielmo, L.D., Geretti, L., Muradore, R., Fiorini, P., Villa, T.:
Open problems in verification and refinement of autonomous robotic systems. In:
Euromicro Conference on Digital System Design. pp. 469–476 (2012)

4. Fainekos, G.E., Gazit, H.K., Pappas, G.J.: Temporal logic motion planning for
mobile robots. In: Robotics and Automation. pp. 2020–2025 (2005)

5. Groote, J.F., Mateescu, R.: Verification of temporal properties of processes in a
setting with data. In: Algebraic Methodology and Software Technology AMAST.
pp. 74–90 (1999)

16

6. Groote, J.F., Mathijssen, A., Reniers, M., Usenko, Y., Weerdenburg, M.V.: The
formal specification language mCRL2. Citeseer (2007)

7. Haidegger, T., Benyó, B., Kovács, L., Benyó, Z.: Force sensing and force control for
surgical robots. In: Symposium on Modeling and Control in Biomedical Systems.
pp. 401–406 (2009)

8. Hasan, O., Tahar, S.: Formal Verification Methods. Encyclopedia of Information
Science and Technology, IGI Global, pages 7162–7170 (2014)

9. Hassan, T., Hameed, A., Nasir, S., Kamal, N., Hasan, O.: Al-zahrawi: A telesurgi-
cal robotic system for minimal invasive surgery. Systems Journal, IEEE,10(3) pp,
1035–1045 (2106)

10. Kazanzides, P., Zuhars, J., Mittelstadt, B., Taylor, R.H.: Force sensing and control
for a surgical robot. In: Robotics and Automation. pp. 612–617 (1992)

11. Kim, M., Kang, K.C., Lee, H.: Formal verification of robot movements-a case study
on home service robot shr100. In: Robotics and Automation. pp. 4739–4744 (2005)

12. Kouskoulas, Y., Renshaw, D., Platzer, A., Kazanzides, P.: Certifying the safe design
of a virtual fixture control algorithm for a surgical robot. In: Hybrid systems:
computation and control. pp. 263–272 (2013)

13. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic
real-time systems. In: Computer Aided Verification. pp. 585–591 (2011)

14. Lahijanian, M., Wasniewski, J., Andersson, S.B., Belta, C.: Motion planning and
control from temporal logic specifications with probabilistic satisfaction guaran-
tees. In: Robotics and Automation. pp. 3227–3232 (2010)

15. Li, L., Shi, Z., Guan, Y., Zhao, C., Zhang, J., Wei, H.: Formal verifcation of a
collision-free algorithm of dual-arm robot in hol4. In: Robotics and Automation
(ICRA). pp. 1380–1385 (2014)

16. Mack, M.J.: Minimally invasive and robotic surgery. The Journal of Americal Med-
ical Association 285(5), 568–572 (2001)

17. Mikaël, L.: Formal Verification of Flexibility in Swarm Robotics. Thesis, Depart-
ment of Computer Science,Universit libre de Bruxelles (2012)

18. Oldenkamp, H.A.: Probabilistic model checking: A comparison of tools. Master’s
thesis, University of Twente, Enschede, Netherlands (2007)

19. Platzer, A., Quesel, J.D.: Keymaera: A hybrid theorem prover for hybrid systems
(system description). In: Automated Reasoning, pp. 171–178. Springer (2008)

20. Rosenberg, L.B.: Virtual fixtures: Perceptual tools for telerobotic manipulation.
In: Virtual Reality Annual International Symposium. pp. 76–82 (1993)

21. Saberi, A.K., Groote, J.F., Keshishzadeh, S.: Analysis of path planning algorithms
: A formal verification-based approach. In: Robotics and Automation ICRA. pp.
232–239 (2013)

22. Scherer, S., Lerda, F., Clarke, E.M.: Model checking of robotic control systems.
In: International Symposium on Artificial Intelligence, Robotics and Automation
in Space (i-SAIRAS). pp. 5–8 (2005)

23. Webster, M., Dixon, C., Fisher, M., Salem, M., Saunders, J., Koay, K., Daut-
enhahn, K.: Formal verification of an autonomous personal robotic assistant. In:
Formal Verification and Modeling in Human-Machine Systems: Papers from the
AAAI Spring Symposium (FVHMS 2014). pp. 74–79 (2014)

24. Xia, T., Baird, C., Jallo, G., Hayes, K., Nakajima, N., Hata, N., Kazanzides, P.:
An integrated system for planning, navigation and robotic assistance for skull base
surgery. ournal of Medical Robotics and Computer Assisted Surgery 4(4), 321–330
(2008)

