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Abstract Approximate adders and multipliers are widely being advocated to be
used in error resilient applications. A very important performance metric in this
regard is the probability of occurrence of error in these arithmetic circuits as this
allows us to choose the most efficient configuration of an adder or multiplier for a
given application. In this chapter, we present an analytical error analysis approach
for approximate adders, which comprise of subadder units, and recursive approxi-
mate multipliers with approximate partial products. We also derive Probability Mass
Function (PMF) of error for both of the considered adder and multiplier models. The
results show that the proposed analysis serves as an effective tool for predicting,
evaluating and comparing the accuracy of various approximate adders and multi-
pliers. For illustration purposes, we also show that the comparative performance of
different approximate adders and multipliers can be correctly predicted in practical
applications of image processing.

1 Introduction

Approximate computing [1] has introduced new avenues of hardware optimiza-
tions in digital designs for computationally extensive applications, which can afford
compromising the exactness in the traditional arithmetic as a trade-off of improved
power, speed or area. There are many such resource and power-hungry applications,
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e.g. big data analytics, image/video processing, data mining, computer vision, arti-
ficial intelligence, deep learning networks etc., which are inherently error resilient.
The error tolerance in such applications may exist because of the redundancy or rep-
etition in data, perpetual limits of the observer or presence of noise. The existence of
this error tolerance in such applications, which usually handle a very large amount
of data, mostly real-time, can be leveraged to relax the error bounds in arithmetic
computations by using approximate computing and hence, optimizing the power
consumption, latency (speed) and area of the digital processing unit (mainly com-
posed of adders and multipliers).

Approximate computing can be applied to a particular application using var-
ious approaches. Numerous architectural, circuit and software level approxima-
tions [2] have already been proposed in the literature. For instance, in complex
algorithms e.g., Artificial Neural Networks (ANN) [3], architectural-level optimiza-
tions/approximations can be applied, by identifying critical neurons. Circuit level
approximations can be achieved by altering/simplifying logic circuits, like in Sys-
tematic Logic Synthesis of Approximate Circuits (SALSA) [4, 5], thus, optimizing
the performance and power of the design at the cost of an erroneous output within
certain bounds. Similarly, another approach for circuit level approximation is to de-
sign arithmetic datapaths with approximate adders [6–9] and approximate multipli-
ers [10–13]. Also, software level approximations can be achieved using techniques
like code perforation [2], etc. The selection for the right approach depends on the
type of application, error resilience bounds and kind of optimization required.

In this chapter, we first explain component-level approximations and their prob-
abilistic behavior by considering approximate adders and multipliers. Next, some
methods used to construct efficient accelerators from these components is discussed.
The discussion is then be extended to cross-layer approximations. Figure 1 explains
the methodology flow of this chapter.

2 Component-Level Approximations: Adders and Multipliers

Adders and Multipliers are foundational blocks in all arithmetic circuits, including
customized on-chip accelerators and general purpose processors. There exist a large
number of computationally intensive applications which require a very high count
of adders and multiplies. Many of these resource intensive applications do possess
error resilience. Owing to this fact, the design of approximate adders and multipliers
has attracted a great attention. Here, we give a brief overview of the approximate
adders and multipliers from the existing literature.
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Fig. 1 Approximate Computing - Chapter Flow Diagram.

2.1 An Overview of Approximate Adders and Multipliers

There are several approaches used to design approximate adders and multipliers.
Some common methods are described below:

• Some generic synthesis algorithms, SALSA [4] and IMPACT [14], have been
used to design adders and multipliers. In this method, the Register Transfer
Level (RTL) design of a precise circuit is input to the algorithm, which modifies
it according to the design and performance constraints to give the approximate
circuit as output.

• In [11, 13, 15, 16], approximate modules for the circuit building blocks are de-
signed and then used to construct larger circuits. For example, in [11, 13, 15],
approximate full adders (FAs) and approximate 2× 2 multipliers are designed
and then used to construct Ripple Carry Adders (RCA) and larger recursive
multipliers. Similarly, in [13, 16], approximate 4 : 2 compressors are used in
Wallace tree multipliers for implementing the adder tree.

• In block-based adders [6,7,17,18], the adder inputs are divided among multiple
disjoint or overlapping subadders. This type of design is inspired by the fact that
the long carry propagations are relatively rare. Therefore, truncating the error
chain introduces very infrequent errors.
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• Many designs simplify the logic for less significant bits while keeping the higher
significance bits accurate. In this way, the error magnitude is limited to rela-
tively small values [19].

• Another technique (ABACUS) is to work out an optimal approximation design
by applying iterative stochastic approach on abstract synthesis tree obtained
from input behavioral description [20].

Different types of approximations discussed above have different types of error pat-
terns, area, speed and power properties. For example, in case of low-power RCAs
constructed from FAs, errors are more frequent and also distributed over a wide
range of values. In contrast, errors in block-based adders are less frequent and can
only have largely spaced values from a small set [21]. However, these are high-speed
adders consume larger silicon area than precise adders.

3 Probabilistic Error Analysis

In traditional arithmetic units, the most commonly considered performance param-
eters are power consumption, critical path, latency (input to output delay) and area
(silicon fabrication). However, approximate computing has introduced the compu-
tational accuracy as another design metric in any arithmetic unit. As in every appli-
cation, error tolerance exists in the form of bounds, beyond which the result/output
becomes useless. While designing an approximate arithmetic unit for an applica-
tion, it is very important to evaluate and qualify for the accuracy metric along with
other parameters, for achieving the maximum and reliable optimization. Accuracy
of approximate adders and multipliers are statistically evaluated for maximum er-
ror/corruption.

An approximate computational system is considered as a deterministic system,
i.e., based on a given input, the output can be reliably pre-evaluated.1 Thus, the
probabilistic analysis of approximate computing system provides the extent of cor-
ruption of random output produced because of a random input to a deterministic
(approximate computing) system.

3.1 Probabilistic vs. Statistical Analysis

Conventionally, Monte-Carlo simulations were considered as the only and the most
reliable method for the statistical analysis of approximate computing units to esti-
mate error performance and provide comparisons between different approaches. In
Monte-Carlo simulations, each configuration of approximate adder/multiplier needs
to be simulated individually, which requires a considerable effort in reprogramming

1 Another class of inexact computing is probabilistic computing, in which probabilistic switches
are used, so that, in addition to the random inputs, the circuit’s function is also random [22].
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the simulation algorithm each time. The processing requirements and computation
time are also quite high. Also, with Monte-Carlo simulations, it is not possible to
locate the cause of error in terms of input distributions and other approximation pa-
rameters [21]. Exhaustive simulations, in which a system under consideration (in
our case, we have an approximate computing unit) is tested for every possible input
value while comparing its result to the correct one, is only a feasible solution for
small circuits [21]. However, when the approximate computing unit contains a large
number of stages/components, an exponential increase in the simulation time and
number of arithmetic computations can be observed as shown in Fig. 2 [23].

In comparison to above, probabilistic analysis of approximate adders and mul-
tipliers can yield mathematical models. On the basis of these models, the cause
and other characteristics of error, and its dependency on input distributions and cir-
cuit parameters, can be explained. Thus, these probabilistic models can serve as a
tool for improvement in approximation approaches. Furthermore, these probabilistic
methods are scalable and generic, in contrast to the traditional techniques.
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Fig. 2 Increase in Exhaustive Simulation Time and Number of Computations (Addtions, Compar-
isons etc.) vs. Adder length (N -bit) for a Circuit Based Approximation Approach (Intel Core i7
3rd Generation) [23].

3.2 Accuracy Metrics

Multiple performance parameters/metrics are used in the literature for quantifying
the accuracy characteristics of approximate adders and multipliers. These parame-
ters, after evaluation, are used for the qualification of approximate computing units
in the application under consideration. Some of these performance metrics in the
domain of approximate computing include minimum acceptable accuracy (MAA),
accuracy of amplitude (ACCamp), accuracy of information (ACCinf), mean error
distance (MED), normalized error distance (NED), error rate (ER), error signifi-
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cance (ES) and maximum error magnitude [22, 24–26]. Traditionally, Monte-Carlo
simulations is a widely known technique for the estimation of these parameters.

In modern literature, accuracy characteristics of approximate computing units
can be authentically evaluated using the probability mass function (PMF) of error
(signed or absolute) value. PMF of the error value can be used to observe respective
error magnitudes and all other aforementioned metrics. In the upcoming sections,
modern probabilistic methodologies for analyzing the ER and PMF is discussed for
a set of selected configurations and classes of adders and multipliers.

3.3 Probabilistic Error Analysis of Approximate Adders

Depending on the approximation techniques, adders can be optimized with respect
to latency (e.g. GeAr [6]) and/or power [9, 14]. In this section, we explain the anal-
ysis methodologies developed in [21] and [23] for low latency approximate adders
(LLAA) and low power approximate adders (LPAA), respectively.

Fig. 3 Block-Based Adder Model.

3.3.1 Adder Model 1 (LLAA)

Fig. 3 shows a general model representing the block-based adders. The input bits are
divided among multiple disjoint or overlapping subadders. Every subadder yields
sum bits for the output from the corresponding input bits, while using some previ-
ous input bits for generating the carry-in. It should be noted here that Fig. 3 shows
a functional model of the adder. Hardware implementation may differ depending
upon the implementation platform. For instance, in [27], a more area-efficient im-
plementation was used in which only the carry generation logic was implemented
instead of the whole adder.
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Analysis of Error Probability

It can be seen from Fig. 3 that the adder output is obtained by gathering the outputs
of all the subadders. Therefore, the probability of error in the adder output is as
follows:

Pr[E] = Pr[E2∨ ...∨EL], (1)

where Ei is a binary random variable, such that Ei = 1 when the output of the ith

subadder is erroneous, and Ei = 0 otherwise. It can be seen from the model that
first sub-adder’s output is always accurate. An expanded form of this Pr[E] is found
using the inclusion-exclusion principle as follows:

Pr[E] =
L

∑
i=2

Pr [Ei]− ∑
2≤i< j≤L

Pr [Ei∧E j]+ ∑
2≤i< j<k≤L

Pr[Ei∧E j ∧Ek]− ...

+(−1)L Pr

[
L∧

i=2

Ei

] (2)

Now, every intersection term in the above equation will be evaluated individually.
Considering any ith subadder, where 2≤ i≤ L, Ei = 1 when the following two events
happen simultaneously:

1. The previous bits that are being used to generate the carry-in are all propagat-
ing, i.e., XOR of all input bit pairs is 1. The probability of this event with N
propagating bits is

Pr[Pi;N] = Pr

[
N∧

n=1

An⊕Bn = 1

]
=

1
2N (3)

where An,Bn is the nth bit pair conributing to carry generation in the ith subad-
der.

2. The previous less significant bits, that are not input to this ith subadder are gen-
erating a carry-out. The probability of this event for K bit pairs is

Pr[Gi;K] = Pr[A1−K +B1−K ≥ 2K ] =
1
2
− 1

2K+1 (4)

where A1−K +B1−K are all the less significant bits that are not input to ith sub-
adder

Thus Ei = Pi∧Gi. In case of intersection terms in (2), there are multiple such condi-
tions. As a result, some groups of bits satisfy multiple conditions simultaneously and
these conditions cannot be treated as independent. A simplification method in [21]
was proposed to convert a set of these dependent conditions into independent ones,
so that the probabilities of intersection can be represented as product of probabilities
of individual conditions. This method is explained through the following example.
Example: Consider an adder with 3 subadders, as shown in Fig. 4. For ease of dis-
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Fig. 4 Example of an Adder with 3 Subadders for the Derivation of Pr[E2∧E3] [21].

cussion, uniformly distributed inputs are assumed. The probability of error is given
as:

Pr[E] = Pr[E2∨E3] = Pr[E1]+Pr[E3]−Pr[E2∧E3]

= Pr[P1∧G1]+Pr[P2∧G2]−Pr[P1∧G1∧P2∧G2]

= Pr[P1]Pr[G1]+Pr[P2]Pr[G2]−Pr[P1∧G1∧P2∧G2]

(5)

For the terms of the form Pr[Pi ∧Gi], the two variables Pi and Gi are defined for
disjoint groups of bits, as shown in Fig. 4. For uniform distribution, all input bits
are identically distributed, so Pi and Gi are independent and hence Pr[Pi ∧Gi] =
Pr[Pi]Pr[Gi]. For the term Pr[P1 ∧G1 ∧P2 ∧G2], some conditions are defined for
same bits. For example, some bits are common for P1, G1 and G2. This set of de-
pendent conditions is converted into another set of independent conditions using the
method in [21]. The conversion is shown in Fig. 4b. The Pr[E] is found as follows:

Pr[E] = Pr[P1]Pr[G1]+Pr[P2]Pr[G2]−Pr[G1]Pr[P1]Pr[P2] (6)
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All the probabilities in the above equation can be found using (3) and (4).

Analysis of Error Probability Distribution

In order to find the PMF of error, the probabilities of all possible values of error
need to be evaluated. The error in any one subadder has a fixed value determined
by the location of carry chain truncation. For the example in Fig. 4, subadder 3 can
only have an error with magnitude 23k. This error happens when there subadder 3 is
erroneous while the output of subadder 2 is accurate. Thus, for every value of adder,
the expressions of the form Pr[E2∧E3∧E4∧E5] need to be evaluated. This is done
as follows:

Pr[E2∧E3] = Pr[E2∧E3∧ (E4∧E5)]+Pr[E2∧E3∧ (E4∧E5)]

=⇒ Pr[E2∧E3∧ (E4∧E5)] = Pr[E2∧E3]−Pr[E2∧E3∧ (E4∨E5)]
(7)

where Pr[E2∧E3∧ (E4∨E5)] = Pr[E2∧E3∧E4]+Pr[E2∧E3∧E5]−Pr[E2∧E3∧
E4 ∧ E5], which contains only joint probabilities that can be evaluated using the
method in previous section. In [21], an algorithm is presented to find the probabil-
ities of all possible combinations of errors. Further details relating to the nature of
overlap among subadders need to be considered for an accurate analysis.

3.3.2 Adder Model 2 (LPAA)

A multi-bit LPAA is composed of cascaded single bit LPAA in configurations, like
ripple carry adder (RCA), carry save adder (CSA), carry lookahead adder (CLA),
etc. A single bit LPAA is usually developed using circuit level approximation ap-
proaches as discussed earlier. Though, the power consumption difference for a sin-
gle bit LPAA is quite small in comparison to a single-bit accurate full adder (Ac-
cuFA). However, this power saving becomes significant when a large number of
these low power adder units are used in an arithmetic logic unit. Table 1 discusses
various single-bit LPAA models present in literature [9] [28]. Bold red outputs in the
truth table signifies the errors caused by these LPAA (either in sum and/or carry).

Analysis of Error Probability

The major challenge in analyzing the multi-bit LPAA using the Principle of Inclusion-
Exclusion technique discussed for LLAA model is the number of stages which are
significantly high in the LPAA adder model. This is because of the reason that in
multi-bit LPAA, each bit of adder is considered as a separate stage or block un-
like LLAA adder model. Thus, an exponential expansion occurs in the number of
equation terms in Principle of Inclusion-Exclusion which makes the solution highly
computationally extensive [23]. In order to overcome the mentioned challenge, an
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Table 1 Truth Tables of Different Single Bit LPAA as Proposed in [9] [28].

Inputs AccuFA LPAA 1 LPAA 2 LPAA 3 LPAA 4 LPAA 5 LPAA 6 LPAA 7
A B Cin Sum Cout Sum Cout Sum Cout Sum Cout Sum Cout Sum Cout Sum Cout Sum Cout
0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 1 1 0 1 0 1 0 1 0 1 0 0 0 1 1 1 0
0 1 0 1 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0
0 1 1 0 1 0 1 0 1 0 1 1 0 1 0 0 1 1 1
1 0 0 1 0 0 0 1 0 1 0 0 1 0 1 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1
1 1 0 0 1 0 1 0 1 0 1 0 1 1 1 0 0 0 1
1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1

iterative approach was presented in [23], which has a significantly low computa-
tional requirement, is linearly scalable and generic for present and future single-bit
LPAA designs. This iterative technique provides the probability of error for multi-
bit LPAA with foreknown input distribution.

(a) (b)

Fig. 5 (a). Block Diagram of Multi-bit Adder, (b). Block Level Implementation of LPAA Error
Analysis Methodology [23].

Consider a multi-bit LPAA in RCA configuration as shown in Fig. 5a with
operands A, B and Cin. It can be observed that in any adder configuration, carry
propagates through the length of the adder. A corruption in carry-out or sum can
cause a corruption in the result produced by the adder. The proposed algorithm
works on the basic rule of statistically discarding the probability of erroneous carry-
out from previous stage to the next stage and thus, each next stage considers the
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probability of carry for the success cases only. The probability of carry for success
cases only decreases along the length of adder because of the corruption caused
by each approximate adder stage. Fig. 5b shows the block level implementation of
methodology.

As shown in Fig. 5b, the first step in the methodology is to estimate the carry-out
bit probability for the success cases only, using the probabilities of input operands
(A, B) and probability of carry-in. The probability of carry-out for successful cases,
estimated in the current stage, is used in the next iteration for the later stage. Thus,
for an N − bit adder (stages), this process is repeated until N − 1th stage. At the
last stage, the probability of success for the complete multi-bit adder, can be evalu-
ated using previous stage (N−2th) carry for success cases only and last stage input
operand probabilities. The probability of error for the multi-bit adder can then be
obtained directly from the probability of success. The same methodology can be
used for probabilistic error analysis of accelerator configurations as well. Like other
probabilistic error analysis techniques, this methodology also assumes that input
operands are statistically independent.

To understand the methodology mathematically, consider operands A and B such
that A0,A1, ...,AN−1 and B0,B1, ...,BN−1 and the carry bit Cin, with corresponding
probabilities P(Ai),P(Bi),P(Cin) where i = 0,1, ..,N−1 for an N-bit adder. Also, it
can be observed from the truth table for LPAA 1 that the probability of carry-out to
be ’1’ or ’0’ for the success cases only changes in an inhomogeneous fashion and
unlike other probabilistic scenarios, a conjugate relation cannot work for these two
probabilities. Therefore, the methodology estimates the probability of carry-out to
be ’1’ (true) for success cases separately with probability of carryout to be ’0’ (false)
for success cases only. The terminologies given below, are used in the mathematical
interpretation of the methodology.

• P(Ccurr) = P(Cin) to be “1” at the current stage
• P(Ccurr) = P(Cin) to be “0” at current the stage
• P(Cnext) = P(Cout) to be “1” at the current stage
• P(Cnext) = P(Cout) to be “0” at the current stage
• P(Succ) = Probability of Success
• P(Succ) = Probability of No Success

The generic methodology for error analysis of LPAA uses 3 matrices (M, K, L).
These matrices can be evaluated using truth table for single-bit LPAA (Table 1) as
below.

1. M-matrix : 1x8 matrix M = [m1,m2, ...,m8], such that mi = 1 if Cout is “1” AND
the case is a Success else mi = 0.

2. K-Matrix : 1x8 matrix K = [k1,k2, ...,k8], such that ki = 1 if Cout is “0” AND the
case is a Success else ki = 0

3. L-Matrix: 1x8 Matrix L = [l1, l2, ..., l8], such that li = 1 if the case is a Success
else li = 0. The above defined matrices remain the same for any LPAA type
and are irrespective of length or configuration of adder. M, K and L matrices for
various LPAA topologies are given in Table 2.
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4. Input probability matrix (IPM) estimates the probability of occurrence of each
state of the truth table and can be iteratively evaluated as below:

IPM = [P(Ai).P(Bi).P(Ccurr ∩Succ),P(Ai).P(Bi).P(Ccurr ∩Succ),

P(Ai).P(Bi).P(Ccurr ∩Succ),P(Ai).P(Bi).P(Ccurr ∩Succ),

P(Ai).P(Bi).P(Ccurr ∩Succ),P(Ai).P(Bi).P(Ccurr ∩Succ),

P(Ai).P(Bi).P(Ccurr ∩Succ),P(Ai).P(Bi).P(Ccurr ∩Succ)]

(8)

5. Using the IPM, along with M and K matrices, we can find the probability of the
carry-out signal using a simple dot product:

P(Cnext ∩Succ) = [IPM].[M]

P(Cnext ∩Succ) = [IPM].[K]
(9)

6. Steps 4 and 5 are repeated N − 1 times in case of an N-bit adder. For every
iteration, we use the evaluated carry probabilities from current stage to evaluate
the ones for the next stage.

7. After N− 1 iterations, the probability of success and error can be evaluated by
dot product as follow:

P(Succ) = [IPM].[L]

P(Error) = 1−P(Succ)
(10)

Table 2 M, K and L Matrices Required for Analysis of LPAA 1-7 Proposed in [28] [9].
Matrix / LPAA Type LPAA 1 LPAA 2 LPAA 3 LPAA 4 LPAA 5 LPAA 6 LPAA 7

M-Matrix [0,0,0,1,0,1,1,1] [0,0,0,1,0,1,1,0] [0,0,0,1,0,1,1,0] [0,0,0,0,0,1,1,1] [0,0,0,0,0,1,0,1] [0,0,0,1,0,1,0,1] [0,0,0,0,0,0,1,1]
K-Matrix [1,1,0,0,0,0,0,0] [0,1,1,0,1,0,0,0] [0,1,0,0,1,0,0,0] [1,1,0,0,0,0,0,0] [1,0,1,0,0,0,0,0] [1,0,1,0,1,0,0,0] [1,1,1,0,1,0,0,0]
L-Matrix [1,1,0,1,0,1,1,1] [0,1,1,1,1,1,1,0] [0,1,0,1,1,1,1,0] [1,1,0,0,0,1,1,1] [1,0,1,0,0,1,0,1] [1,0,1,1,1,1,0,1] [1,1,1,0,1,0,1,1]

This methodology has insignificant computational requirements for any adder
length and it can cater-for any LPAA design as it needs just three matrices defining
the behavior of the adder to work. These three matrices can be easily evaluated from
the truth table of the new LPAA as defined above. The same methodology can also
be applied for probability of error analysis of LLAA (Adder Model 1).

3.4 Probabilistic Error Analysis of Approximate Multipliers

3.4.1 Multiplier Model

Fig. 6 shows a general model of the recursive approximate multipliers [11, 15, 29].
An N ×N multiplier is constructed from M×M approximate multiplier building
blocks. Several low-power 2×2 approximate multipliers have been designed [2,11,
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Fig. 6 Model of Recursive Approximate Multiplier.

15] for this type of multipliers. Another approach used is to use 4×4 components,
which employ approximate 4 : 2 compressors [13, 30].

3.4.2 Analysis of Error Probability

For a given N×N multiplier employing M×M components, the PMF of error in
M×M component is known from its truth table. Let Θ be the set containing all
M-bit values of inputs that lead to error in the output of M×M multipliers. The
probability of error in M×M multiplier with M-bit inputs XM and YM is defined as
ρM = Pr[XM ∈Θ ∧YM ∈Θ ]. In Fig. 6, since every M-bit component of input A is
multiplied with every M-bit component of input B, the Pr[E] is found as follows:

Pr[E] = Pr

N/M∨
i=1

Ai ∈Θ

∧
N/M∨

i=1

Bi ∈Θ

 (11)

where Ai and Bi are groups of M bits of inputs A and B, respectively. For uniformly
distributed inputs, Ai and Bi are independent for all i ∈ {1,2, ...,N/M}. Moreover,
the two inputs A and B are also assumed to be independent and identically distibuted.
Therefore, Pr[Ai ∈Θ ] = Pr[Bi ∈Θ ] =

√
(ρM). Hence,

Pr[E] = Pr

N/M∨
i=1

Ai ∈Θ

Pr

N/M∨
i=1

Bi ∈Θ

=

Pr

N/M∨
i=1

Ai ∈Θ

2

(12)
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Table 3 PMF Analysis for 4×4 multiplier employing Kulkarni’s 2×2 design.

Input conditions Probability Erroneous Partial Products Error Magnitude 
𝐴1, 𝐵1 = 112 1/16 𝐴1𝐵1 2 
𝐴2, 𝐵1 = 112 1/16 𝐴2𝐵1 8 

𝐴1, 𝐴2, 𝐵1 = 112 1/64 𝐴1𝐵1, 𝐴2𝐵1 2 + 8 = 10 
𝐴1, 𝐵2 = 112 1/16 𝐴1𝐵2 8 
𝐴2, 𝐵2 = 112 1/16 𝐴2𝐵2 32 

𝐴1, 𝐴2, 𝐵2 = 112 1/64 𝐴1𝐵2, 𝐴2𝐵2 8 + 32 = 40 
𝐴1, 𝐵1, 𝐵2 = 112 1/64 𝐴1𝐵1, 𝐴1𝐵2 2 + 8 = 10 
𝐴2, 𝐵1, 𝐵2 = 112 1/64 𝐴2𝐵1, 𝐴2𝐵2 8 + 32 = 40 

𝐴1, 𝐴2, 𝐵1, 𝐵2 = 112 1/256 𝐴1𝐵1, 𝐴1𝐵2, 𝐴2𝐵1, 𝐴2𝐵2 2 + 8 + 8 + 32 = 50 

 

The probability above can be evaluated using the inclusion-exclusion principle and
due to the independence property of Ai and Bi, for i ∈ {1,2, ...,N/M}, the intersec-
tion terms in the inclusion-exclusion expansion can be represented as products of√

ρM . Hence, the expression simplifies as follows:

Pr[E] =

(
N/M

∑
i=1

(−1)i+1
(

N/M
i

)
(
√

ρM)i

)2

(13)

The method described above is exact for those multipliers that match with the as-
sumptions in their behavior [11, 30]. For other multipliers [2, 13], it gives a good
approximation [29].

3.4.3 Analysis of Error Probability Distribution

For PMF, all possible values of error and their probabilities need to be evaluated.
In [29], an algorithm was developed for this purpose. This algorithm considers all
possible combinations of M-bit groups of each input and their corresponding prob-
abilities. Error value is determined by identifying which partial products will be
erroneous and multiplying the error in M×M component with the power of shift
of these partial products. The evaulation of error probability and PMF is explained
through the following example.

Example: Consider an 4× 4 multiplier made up of 4 Kulkarni’s multipliers
which are 2× 2 components. Kulkarni’s multiplier introduces an error of magni-
tude 2 when both inputs are 112, so ρM = 1/16 and Θ = {112}. Probability of error
is found as follows:

Pr[E] = (Pr[A1 ∈Θ ]+Pr[A2 ∈Θ ]−Pr[A1 ∈Θ ∧A2 ∈Θ ])2

=
(√

ρM +
√

ρM− (
√

ρM)2)2
= 0.1914

(14)

For the PMF, all possible errors are considered individually and their probabilities
are determined. Table 3 shows the analysis. For larger multipliers and M×M mul-
tipliers with a more complicated behavioral model, Algorithm 1 in [29] is used to
automate this analysis.
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3.5 Analysis with Arbitrary Input Probability Distributions

3.5.1 Probability of Error in Accelerators

If there are more than one approximate component in a circuit, such that the cumula-
tive error is the sum of errors in individual components, an approximated probabilis-
tic analysis can be carried out by assuming that all the components are independent
and all the intermediary inputs are approximately uniformly distributed. The PMF
of the cumulative error value is defined as the convolution of PMFs of individual
components. This method was shown to yield good approximation in [21]. Simi-
larly, discrete cosine transform (DCT) based JPEG multimedia compression using
approximate accelerators was designed in [31]. This approximate design is proven
to save up to 15% area on silicon chip and 40% reduction in power consumption.

4 Accuracy Configurability and Adaptivity in Approximate
Computing Systems

Considering the difference in the demand of accuracy in various applications and
also taking into account the probable alterations in the configuration of approximate
module during application runtime, many multipliers and adders have been designed
to include integrated error detection and correction (EDC) units [6, 7, 11, 30]. Nev-
ertheless, EDC introduces an overhead, which expands with size of approximate
processing unit.

4.1 Approximate Accelerators with Consolidated Error Correction

As previously discussed, approximate adder and multipliers are equipped with EDC
to benefit in certain environments. However, when the size of datapath increases, the
overhead introduced by EDC becomes non-trivial and benefits of having approxi-
mate computing get suppressed. Recently, a consolidated error correction (CEC)
approach was proposed to overcome this limitation [32]. The reduction in overhead
was achieved by introducing Error Detection (ED) for all components in approxi-
mate computing unit. The generated ED signals are then used for joint CEC for a
group of components. Grouping the larger number of components together in the
same manner results in further optimization of area and speed of approximate com-
puting unit with error correction.

Example: Fig. 7 shows an accelerator, composed of block-based adder (model
1), with a common CEC implemented for a group of 8 adders. This simplification
in the circuit design is due to the fact that, in block-based adder circuits, error can
attain certain specific values, which depend on the location from where carry-chain



16 Sana Mazahir, Muhammad Kamran Ayub, Osman Hasan, and Muhammad Shafique

Fig. 7 Accelerator with Error Detection.

has been truncated. By locating these truncation positions, the ED signals can easily
calculate the error value. In terms of speed and area optimizations, this design is
found to be more efficient than the EDC designs in [6, 7].

4.2 Adaptive Datapaths

The major objective of the adaptive approximate computing [27] is to minimize the
accumulated error by designing a datapath with several approximate additions and
multiplications, such that the error in one operation, controls the approximate mod-
ule used in the subsequent operation. To achieve this, complementary approximate
modules were designed, such that the datapath is composed of both standard and
complementary versions of the module. The complementary versions are such cir-
cuits that generate errors with opposite signs as compared to the standard versions.
The selection of module in the subsequent operation depends on the ED signals.

Following components and control mechanisms are needed to design the datapath
using the algorithm in Fig. 8.
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• Approximate modules with complementary and standard versions. Preferably,
the complementary and standard versions of approximate module should have
1). opposing polarities, same error magnitudes and equal probabilities, i.e., p (
ESAM )(x) = p (ECAM )(x) and, 2). same silicon area, power consumption and
speed/performance.

• For every component in the datapath, an ED signal has to be generated.
• A signal or mechanism S/C which can indicate the type of module currently

being used.
• Using the S/C and ED signals, a control logic or mechanism for switching be-

tween the complementary and standard modules

With the above explained datapath design, the error in any two modules gets
partially or completely cancelled, causing a significant reduction in the cumulative
error. If complementary and standard versions of approximate modules are capable
of completely nullifying the error introduced by each other, the cumulative error
shall be non-zero only when there exists non-even number of erroneous modules in
the datapath. Also, in this case, the maximum error accumulates in the complete dat-
apath shall be limited to the maximum error in a single approximate module. Thus,
with this method, if datapath is designed using M approximate modules, a reduction
of up to M times can be achieved in maximum cumulative error in comparison with
conventional homogeneous accelerator.

Example: For the better understanding of the adaptive datapath, consider the
example of block-based adders working as an accumulator. To simplify the discus-
sion, we consider an adder with two subadders as given in Fig. 8b. As prominent
from the figure, cin signal is used to identify between complementary and standard
modules. The ED signal will attain value 1 whenever the carry generated by the first
subadder is different from the cin signal of the other subadder. As per 8a, the error
in one addition enforces the next addition to be carried out by the complementary
approximate module. In this way, the maximum error magnitude in this subadder
remains confined to the error magnitude in one approximate adder [27].

5 Conclusion

Arithmetic logic units (ALU), containing adders and multipliers, can benefit from
approximate computing due to the inherent error resilience in multiple applications.
However, the error introduced in the computations because of approximate comput-
ing elements, should stay in particular bounds to avoid any malfunctioning. There-
fore, based on the expected input operand characteristics, error in any approximate
computing application needs to be pre-evaluated. In this chapter, we have discussed
various approximation techniques and different metrics for the qualification of an
approximate architecture in an arithmetic application. Also, we have discussed the
statistical error analysis techniques for different variants of approximated adders,
accelerators and multipliers. Lastly, we have explained multiple approaches for er-
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(a)

(b)

Fig. 8 Block-Based LLAA as an Accelerator.
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ror detection and correction in these approximation units along with the insight of
adaptive datapaths.
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