
energies

Article

Formal Asymptotic Analysis of Online Scheduling
Algorithms for Plug-In Electric Vehicles’ Charging

Asad Ahmed 1,*,†, Osman Hasan 1,†, Falah Awwad 2, Nabil Bastaki 2 and Syed Rafay Hasan 3

1 School of Electrical Engineering and Computer Science, National University of Sciences and Technology
(NUST), H-12 Islamabad, Pakistan; osman.hasan@seecs.nust.edu.pk

2 College of Engineering, United Arab Emirates University, Al-Ain 15551, UAE; f_awwad@uaeu.ac.ae (F.A.);
nabil@uaeu.ac.ae (N.B.)

3 Department of Electrical and Computer Engineering, Tennessee Technological University,
Cookeville, TN 38505, USA; shasan@tntech.edu

* Correspondence: asad.ahmed@seecs.nust.edu.pk; Tel.: +92-51-9085-2086
† These authors contributed equally to this work.

Received: 27 September 2018; Accepted: 7 November 2018; Published: 21 December 2018 ����������
�������

Abstract: A large-scale integration of plug-in electric vehicles (PEVs) into the power grid system
has necessitated the design of online scheduling algorithms to accommodate the after-effects of
this new type of load, i.e., PEVs, on the overall efficiency of the power system. In online settings,
the low computational complexity of the corresponding scheduling algorithms is of paramount
importance for the reliable, secure, and efficient operation of the grid system. Generally, the
computational complexity of an algorithm is computed using asymptotic analysis. Traditionally,
the analysis is performed using the paper-pencil proof method, which is error-prone and thus
not suitable for analyzing the mission-critical online scheduling algorithms for PEV charging.
To overcome these issues, this paper presents a formal asymptotic analysis approach for online
scheduling algorithms for PEV charging using higher-order-logic theorem proving, which is a sound
computer-based verification approach. For illustration purposes, we present the complexity analysis
of two state-of-the-art online algorithms: the Online cooRdinated CHARging Decision (ORCHARD)
algorithm and online Expected Load Flattening (ELF) algorithm.

Keywords: asymptotic analysis; computational complexity; HOL-Light

1. Introduction

Electric road technologies are envisaged as alternatives to traditional fossil-fuel-based
transportation due to their low greenhouse gas emissions, energy security, and noise mitigation.
These advantages have led to a rapid increase in their volume, e.g., more than 1 million electric vehicles
were sold worldwide in the year 2017 alone [1]. This enormous increase has also resulted in a new
billion-dollar industry for the development and deployment of electric vehicle (EV) units and their
operations [2].

Plug-in electric vehicles (PEVs) are a type of electric vehicle and are characterized by a
comparatively larger battery, a charging plug, and an internal combustion engine for powering
the vehicle and battery [3]. This technology, in conjunction with the smart grid concept, enables the
bidirectional flow of power, i.e., from the grid to the vehicle and from the vehicle to the grid [4]. The use
of electric vehicles as a load that can be scheduled in the electricity system, offering storage capability
and bidirectional power flow, is anticipated to be effectively used as part of the integration of renewable
energy sources, load flattening, peak shaving, and frequency fluctuation mitigation [5]. Therefore,
the optimal scheduling of PEV charging/discharging results in an optimized bidirectional flow of

Energies 2019, 12, 19; doi:10.3390/en12010019 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
http://dx.doi.org/10.3390/en12010019
http://www.mdpi.com/journal/energies
http://www.mdpi.com/1996-1073/12/1/19?type=check_update&version=1

Energies 2019, 12, 19 2 of 21

power between PEVs and power grid [6], and thus, a reduced capital cost of electricity generation and
minimization of the operational cost of the grid.

Mathematically, the PEV scheduling problem for charging/discharging is posed as an
optimization problem subject to the constraints imposed by the infrastructure and physical properties
of the grid and EVs. The optimization problem is then solved using linear programming [7],
nonlinear programming [8], model predictive control (MPC) [9], and queuing theory [10], among many
other methods. These scheduling algorithms are further classified as online and offline algorithms,
which provide scheduling based on causal and non-causal information, respectively.

In an offline setting, a PEV’s charging profile is assumed to be known to the charging station
for scheduling purposes, prior to the arrival of the PEV [11,12]. However, in real-world settings,
the assumption of prior knowledge is not realistic. Moreover, the PEV charging problem is prone
to the uncertainties introduced by the random arrival and departure of PEVs, intermittent power
generation from renewable energy sources, and fluctuation in demand and prices of the electricity in
the system [5]. In this context, online algorithms cater to the uncertainties associated with the PEV
charging problem. In an online setting, the arrival and departure times and charging demand of a PEV
are only available to the controller for purposes of scheduling when a PEV is plugged into the charging
facility. The scheduler then schedules all the plugged-in PEVs and also allocates the charging rate to
each PEV so that the objectives, such as power consumption, are minimized, as shown in Figure 1.

Figure 1. Online plugged-in electric vehicle (PEV) charging scheduling [13].

Generally, an online algorithm incorporates information based on the history, knowledge,
and statistics available for the future data, in addition to the currently available data, to improve
the overall efficiency of the algorithm [13]. Although the use of an online scheduling algorithm
for PEV charging facilitates the account of uncertainties, the efficiency of these algorithms is highly
sensitive to the size of the PEV population. A large population of PEVs results in exponential growth
of the computational complexity of these algorithms which, in turn, can jeopardize the reliability,
efficiency, and security of the grid operation. To address this issue, recent online scheduling algorithms
have alleviated the unbearable computational cost of the online algorithms by devising various
low-complexity routines for the optimal scheduling of PEVs [9,14,15].

The computational complexity of an algorithm refers to the number of primitive operations or
steps required to solve a given task using some method or an algorithm [16]. These primitive operations
include basic arithmetic operations, such as addition, subtraction, multiplication, and division.
In the study of algorithm analysis, a pseudocode is usually used to describe the working of an
algorithm using control structures adopted from different conventional programming languages and
mathematical notations. The computational complexity for a given algorithm can be judged based on
the number of steps from the pseudocode of the given algorithm and also the cost associated with each
step. Mathematically, the computational complexity utilizes asymptotic theory, which, by definition,

Energies 2019, 12, 19 3 of 21

characterizes the limiting behavior of a function [17], with respect to the input size, to describe
the notions of the best, worst, and average case computational complexity of an algorithm [16].
Asymptotic notations, such as Big-Oh (Big-O), Big-Omega (Big-Ω), Big-Theta (Big-Θ), little-oh (little-o),
and little-omega (little-ω), are used to express the asymptotic bounds for the complexity function of a
given algorithm, and thus allows us to characterize the efficiency of an algorithm and also compare
relative performance of alternative algorithms [16]. Table 1 presents the asymptotic notions in terms of
limits and set theory.

Table 1. Asymptotic Notations.

Notation Limit Definition Set Definition

f = O(g) lim
n→∞

f (n)
g(n) 6= ∞ { f (n)|(∃ c no. (∀no < n ∧ 0 < c⇒ | f (n)| ≤ cg(n)))}

f = Ω(g) lim
n→∞

f (n)
g(n) 6= 0 { f (n)|(∃ c no. (∀no < n ∧ 0 < c⇒ cg(n) ≤ | f (n)|))}

f = Θ(g) lim
n→∞

f (n)
g(n) 6= 0, ∞ { f (n)|∃c1c2no.(∀no < n ∧ 0 < c1 ∧ 0 < c2 ⇒ c1g(n) ≤ | f (n)| ≤ c2g(n)))}

f = o(g) lim
n→∞

f (n)
g(n) = 0 { f (n)|(∃ c no. (∀no < n ∧ 0 < c⇒ | f (n)| < cg(n)))}

f = ω(g) lim
n→∞

f (n)
g(n) = ∞ { f (n)|(∃ c no.(∀no < n ∧ 0 < c⇒ cg(n) < | f (n)|))}

Big-O is a set that contains all functions, f (n), for which there always exist constants no and c,
such that the magnitude of f (n) is less than and equal to the constant multiplier of function g(n),
i.e., f (n) ≤ cg(n), for some no < n, as shown in Figure 2a. Big-O allows for describing the upper bound
of a function and, therefore, it is used to abstract the worst-case running time or space complexity of
an algorithm.

n0

f(n)

cg(n)

n0

f(n)

cg(n)

`

n0

f(n)

cg(n)

`

n0

f(n)

cg(n)

n0

f(n)

c1g(n)

c2g(n)

n0

f(n)

c1g(n)

c2g(n)

(a) Big-O Notation (b) Big-Omega Notation (c) Big-Theta Notation

Figure 2. Asymptotic upper, lower and tight bounds of a function (from (a–c)).

Big-Ω is a set that contains all functions f (n), for which there always exist constants no and c, such
that the magnitude of f (n) is greater than and equal to the constant multiplier of the function g(n),
i.e., cg(n) ≤ f (n), for some no < n, as shown in Figure 2b. Big-Θ is a set that contains all functions
f (n), for which there always exist constants no, c1, and c2, such that the magnitude of f (n) is bounded
by the constant multiplier of function g(n), i.e., c1g(n) ≤ f (n) ≤ c2g(n), for some no < n, as shown in
Figure 2c. This notation is used for describing the situation when an algorithm has the same best- or
worst-case computational or space complexity. To the contrary, little-o and little-ω are used to describe
weak asymptotic lower and upper bounds by not incorporating the equality condition used in the
definitions of the Big-O and Big-Ω, respectively.

Traditional analysis techniques, such as simulations and computer algebra systems, cannot be
used to conduct a complete asymptotic analysis of algorithms due to their inability to deal with the
limiting behavior, as shown in Table 1, in a true manner. Therefore, in practice, the asymptotic analysis
is carried out using the paper-pencil method. However, it is also error-prone due to the involvement

Energies 2019, 12, 19 4 of 21

of humans in the analysis. Moreover, this analysis method is not scalable, as the large-sized models
cannot be handled very efficiently on paper. To address these issues, we propose to use a formal
asymptotic analysis technique for the online scheduling algorithms for PEV charging schedules.

Formal methods [18] are computer-based mathematical techniques, which are being widely
adopted for the specification, analysis, and verification of hardware and software systems.
These techniques use logic to formally express and reason with regard to the mathematical models
of systems and, therefore, they provide a mechanized platform which is characterized as highly
expressive and sound [19]. A suitable logic, such as temporal logic, first-order, predicate, and second-
or higher-order logic, with the help of its well-defined syntax, semantics, and proof theory, allows for
expressing a discrete or continuous model of the given system and formally reasoning and verifying the
correctness of the intended behavior of the system based upon a few axioms of the corresponding logic.
A combination of logic and modeling technique, such as finite state machine (FSM) and automaton,
leads to a variety of formal method-based solutions [20] for the formal verification of systems, such as
sequential or concurrent systems.

Formal methods can be mainly categorized into two mainstream techniques, i.e., model checking
and theorem proving techniques. Model checking [21] employs the finite state machine notion to
model the system for the purpose of exhaustive state-space verification of systems in a model
checker—a piece of software. Model checking allows automatic verification and thus is easy to
use, but it can be subject to state-space explosion for the systems—a situation when the state-space
of the corresponding model grows extremely large. Moreover, model checking cannot be used to
verify generic mathematical expressions and, therefore, it is not suitable to formally model and verify
properties regarding asymptotic notations, which are based upon the limits concept. On the other hand,
theorem proving is a formal methods technique that allows for describing any mathematical model
by choosing an appropriate logic and then using mathematical reasoning to verify its corresponding
properties in a theorem prover—a piece of software. Higher-order logic is quite expressive and allows
reasoning about continuous aspects as well. Therefore, we employed theorem proving for the formal
asymptotic analysis of online scheduling algorithms for PEV charging.

The primary objective of this paper is to develop a framework for the formal asymptotic
analysis using theorem proving for online charging scheduling algorithms for plug-in electric vehicles.
A rigorous formal verification of the computational complexity of algorithms results in the explicit
specification of assumptions under which results will be valid. These assumptions are about the system
parameters, such as number of vehicles, etc., and, therefore, are helpful in providing valuable insights
before the implementation phase. Moreover, due to the generic formalization of asymptotic notations,
the formalization can be utilized readily for the applications of asymptotic analysis in many other
fields, such as applied mathematics and probability theory. The O-notation has been formalized in the
Isabelle/HOL (higher-order-logic) theorem prover [22] using the ring theory. However, to the best of
our knowledge, this formalization of asymptotic notations has not been used to analyze any practical
problem. Moreover, to the best of our knowledge, the other asymptotic notations, i.e., Big-Ω, Big-Θ,
little-o, and little-ω, have not been formalized in higher-order logic. In this paper, we propose a real
theory-based formalization of all asymptotic notations using the HOL-Light theorem prover and utilize
them to analyze the computational complexity of online scheduling algorithms for PEV charging.

Keeping in view the uncertainties coupled to the electric vehicle charging scheduling problem,
various online algorithms are available in the literature to alleviate negative effects and harvest
potential benefits from the integration of this new type of load into the grid system. For example, an
online auction protocol to increase the allocation efficiency of a charging facility in comparison to a
fixed price strategy, given the requirements of electric vehicle owners, is described in [15]. Similarly, a
decentralized [6,11] approach is used for optimally allocating a charging or discharging schedule to
plugged-in electric vehicles for the purpose of using the electricity stored in the mounted batteries with
a low computational burden on the central utility. However, the aforementioned approaches require
beforehand knowledge of electric vehicle charging demands, which may not be always available.

Energies 2019, 12, 19 5 of 21

The nonlinear online maximum sensitivity selection-based charging algorithm (NOL-MSSCA) [23] is
used to cater to the current harmonic effects caused by the injection of variable speed drives (VSDs),
variable frequency drives (VFDs), energy-efficient lights, switching converters, smart appliances, and
plug-in electric vehicles (PEVs) in the grid system. NOL-MSSCA considers the random arrival of
PEVs into the system over the span of 24 h and uses a priority-based criterion for allocating resources
for charging electric vehicles to minimize the effects of current harmonics caused by nonlinear loads.
However, this work does not address the computational complexity issue explicitly. The Online
cooRdinated CHARging Decision (ORCHARD) algorithm [9] models an online scenario by considering
random arrivals or departures of electric vehicles and their charging demands. Moreover, a low
computational complexity routine is devised to avoid computational burden for solving the scheduling
problem of PEVs for every arrival or departure. There is another class of load scheduling algorithms
which rely on the model predictive control (MPC) approach to utilize future information of the load to
enhance the grid operation and achieve various desirable objectives, like energy cost and uncertainty
regulation [14,24–26]. In particular, Expected Load Flattening (ELF) [14] is based on the assumption of
random arrivals or departures of PEVs along with additional future information, incorporated using a
model predictive approach, for an optimal online scheduling of PEV charging.

The algorithms, i.e., ORCHARD and ELF, besides being state-of-the-art, claim to reduce the
worst-case computational complexity of the scheduling algorithms for PEV charging. However,
the existing computational complexity analysis of these algorithms is based on the traditional
paper-and-pencil proof method and is quite informal in its presentation, as well. On the other hand, the
computational complexity of online algorithms is usually a foremost consideration for the appropriate
and efficient functioning of the real-time systems [27], as a high computational complexity can lead to
an unbearable monetary loss in a PEV integrated grid system. Therefore, in this paper, we present
the formal verification of the computational complexity of the aforementioned algorithms using the
formalization of asymptotic notations in HOL-Light. Besides the formal verification of asymptotic
properties in the sound core of HOL-Light, the main challenge involved in the proposed work is the
formulation of the mathematical problem—related to the complexity of the given algorithms—for
conducting their formal analysis in the HOL-Light theorem prover.

1.1. Contribution of the Paper

The main contributions of this paper are:

• A higher-order-logic framework is proposed to conduct formal asymptotic analysis using the
HOL-Light theorem prover.

• Formal verification of low computational complexity results are reported for state-of-the-art
online scheduling algorithms for PEV charging, i.e., ORCHARD and ELF.

• The formally verified low computational complexity results are then used to compare the effect of
the cost of operation of a scheduler and PEV load for ORCHARD and ELF algorithms in MATLAB
R2016a [28].

1.2. Organization of the Paper

The rest of the paper is organized as follows: Section 2 describes some preliminaries essential for
the understanding of the rest of the paper. Section 3 provides the methodology adopted to formally
analyze the online scheduling algorithms for PEV charging. Section 4 describes the formalization of
asymptotic notations in HOL-Light. Section 5 describes the formal analysis of the chosen algorithms in
HOL-Light. Finally, Section 6 concludes the paper.

2. Preliminaries

This section provides a brief introduction to theorem proving and HOL-Light theorem prover to
facilitate the understanding of the rest of the paper.

Energies 2019, 12, 19 6 of 21

2.1. Theorem Proving

Theorem proving is a widely used formal method [18] for describing and verifying the
mathematical model of a system using formal logic, such as propositional, first-order, and second- or
higher-order logic. A well-defined proof theory, semantics, and syntax of the formal logic allows the
rigorous reasoning of the system’s design, properties, and correctness [29]. Various theorem provers,
e.g., HOL-Light [30], HOL [31], Coq [32], and PVS [33], have been used for the mechanization of the
formal proofs.

Theorem proving is mainly categorized as automated and interactive theorem proving.
In automated theorem proving, a decidable logic is employed to model the system, and, therefore, it
is possible to develop automatic procedures for the verification of the model. However, the limited
expressiveness of the decidable logic does not allow for modeling complex mathematical notions,
such as limits, which are commonly employed to analyze the system’s behavior. Therefore, a more
expressive formal logic, such as higher-order logic, is used to model such behaviors. These logical
frameworks, however, require interaction between humans and machines to accomplish the verification
task of the system. Generally, this type of theorem proving is referred to as interactive theorem proving.
The ability to use a wide range of logic in the verification process makes theorem proving a highly
expressive and flexible technique for formal verification.

Theorem proving provides a very flexible platform for the abstraction, formal verification, and
specification of mathematical concepts, such as the limiting behavior of functions, and, therefore,
we chose this technique for the formal asymptotic analysis of the online scheduling algorithms for
PEV charging.

2.2. HOL-Light Theorem Prover

HOL-Light [30] is an interactive higher-order-logic theorem prover that belongs to the HOL
family of theorem provers. The higher-order logic is implemented using Objective CAML (OCaml)
language [34]—which is a variant of the strongly typed functional programming language—in
HOL-Light to express and apply proof strategies and develop logical theories. HOL-Light provides
formal reasoning support for many mathematical theories, including sets, natural numbers, real
analysis, complex analysis, and vector calculus, and has been particularly successful in verifying many
software and hardware systems [18,30,35].

HOL-Light provides a platform for the secure and sound formal verification and specification
of systems under verification. Secure theorem proving is ensured because of its small core, which
consists of 1500 lines, including a core set of 10 primitive inference rules, such as modus ponens
and reflexivity. These primitive inferences are realized as OCaml language, and every new theorem
is proved using these rules. These verified theorems can be stored for future use as an HOL-Light
theory, which is a computer file. These theories can be loaded by the HOL-Light users in their running
sessions, and, therefore, they can be utilized for the verification of new theorems. HOL-Light supports
both backward and forward proof methods. The former consists of using inference rules to deduce the
proof of the desired theorem, whereas the latter consists of breaking the main goal into subgoals using
HOL-Light tactics, which are special ML functions for generating subgoals from a main goal.

We selected the HOL-Light theorem prover for the proposed work as it is equipped with a rich
library of mathematical theories of set, natural numbers, and real numbers. Table 2 presents some
frequently used HOL-Light functions and symbols to facilitate the understanding of the formalization
and verification in this paper.

Energies 2019, 12, 19 7 of 21

Table 2. Higher-order-logic (HOL) symbols and functions.

HOL Symbol Standard Symbol Meaning

∧ and Logical and
∨ or Logical or
¬ not Logical negation

λ x.t λ x.t Function that maps x to t(x)
num {0, 1, 2, . . .} Positive integers data type
real All real numbers Real data type
SUC n n + 1 Successor of a num

rpow x y xy Power with real exponent
max (f(x), g(x)) max(g(x), f (x)) Maximum among f (x) and g(x)

3. Proposed Methodology

In this section, we present the main steps of the proposed methodology, depicted in Figure 3,
for conducting the formal asymptotic analysis of online scheduling algorithms for PEV charging.

1. As a first step, we formalize asymptotic notations in higher-order logic to be able to formally
verify the properties of asymptotic notations in the sound core of the HOL-Light theorem prover.
The formalization is based on the formalized mathematical theories of set, real, and natural
number theories available in the library of HOL-Light. This formalization allows the formal
verification of the properties of asymptotic notations, which play a pivotal role in the formal
verification of the results related to the online scheduling algorithms for PEV charging.

2. The second step in the formal asymptotic analysis of an algorithm for PEVs is to represent its
behavior while incorporating its implicit concepts as a pseudocode. As described earlier, this
pseudocode then forms the basis on which we can describe the complexity function of an algorithm
afterward. Due to the very generic and flexible presentations of algorithms, availability in the
PEV literature, and varying audiences, it is not a very easy task to obtain the pseudocodes of
the available algorithms. For example, the pseudocode for the Online cooRdinated CHARging
Decision (ORCHARD) algorithm, considered in this paper for the formal asymptotic analysis, is
not available in the original paper [9]. Moreover, this step also allows the explicit investigation and
specification of the pseudocodes of ancillary algorithms (such as insertion sort algorithm) which
are required to accomplish the formal analysis of online scheduling algorithms for PEV charging.

3. Finally, the computational complexity functions obtained from Step 2 are formally specified
as higher-order-logic functions, utilizing the formal modeling of asymptotic notations from
Step 1. Then, the properties of interest for an algorithm are formally verified as higher-order-logic
theorems using the sound core of the HOL-Light theorem prover based on the formalized notions
and properties of asymptotic notations from Step 1, as shown in Figure 3.

Energies 2019, 12, 19 8 of 21

Set Theory,

Number

Theory, Real

Theory

HOL-Light

Asymptotic NotationsHigher-order Logic

Library

Step 2Step 1 Step 3 Formally Verified Proof Goals

Online Scheduling Charging PEV Algorithm

Insertion Sort Algorithm

Computation Complexity Function

Pseudocode

Formal SpecificationFormal model

Complexity Proof GoalsProperties Proof Goals

Figure 3. Proposed methodology for PEV charging algorithms in HOL-Light.

4. Formalization of Asymptotic Notations in HOL-Light

In this section, we present a higher-order-logic formalization of asymptotic notations, described
in Table 1, in the HOL-Light theorem prover.

Definition 1. ` ∀ g. BigO (g : num→ real) =

{ (f : num→ real) |(∃ c n_0. (∀ n. n_0 ≤ n

⇒ 0 < c ∧ 0 ≤ f(n) ∧ f(n) ≤ c ∗ g(n)))}

where g : num→ real and f : num→ real are functions that accept a natural number (num) as an
argument and return a real number (real). The constants c and n_0 are of type real and num,
respectively, and n is a variable of type (num). BigO is a higher-order-logic function that accepts a
function g : num→ real as an argument and returns a set of functions such that every f has a growth
rate proportional to the product of function g and a constant multiplier c, i.e., 0 ≤ f(n) ≤ c ∗ g(n).
On the other hand, 0 ≤ f(n) ensures that the member function is a positive function. In algorithm
analysis, Big-O notation is used to specify the asymptotic upper bound for the complexity of
an algorithm.

Definition 2. ` ∀ g. BigOmega (g : num→ real) =

{ (f : num→ real) | (∃ c n_0. (∀ n. n_0 ≤ n ⇒ 0 < c ∧ 0 ≤ c ∗ g(n) ≤ f(n)))}

In the above definition, BigOmega is a higher-order-logic function that accepts a function
g : num→ real as an argument and returns a set of functions such that every f has a growth rate
proportional to the product of function g and a constant multiplier c, i.e., 0 ≤ c ∗ g(n) ≤ f(n). On the
other hand, 0 ≤ f(n) ensures that the member function is a positive function. In algorithm analysis,
Big-Ω notation is used to specify the asymptotic lower bound for the complexity of an algorithm.

Definition 3. ` ∀ g. BigTheta (g : num→ real) =

{ (f : num→ real) | (∃ c1 c2 n_0. (∀ n. n_0 ≤ n

⇒ 0 < c1 ∧ 0 < c2 ∧ 0 ≤ c1 ∗ g(n) ≤ f(n) ≤ c2 ∗ g(n)))}

In the above definition, BigTheta is a higher-order-logic function that accepts a function
g : num→ real as an argument and returns a set of functions such that every f growth rate satisfies an

Energies 2019, 12, 19 9 of 21

inequality, i.e., c1 ∗ g(n) ≤ f(n) ≤ c2 ∗ g(n), where c1 and c2 are real constants. In algorithm
analysis, Big-Θ notation is used to specify the asymptotic tight bounds for the complexity of
an algorithm.

Definition 4. ` ∀ g. LittleO (g : num→ real) =

{ (f : num→ real) |(∃ c n_0. (∀ n. n_0 ≤ n

⇒ 0 ≤ c ∧ 0 < f(n) ∧ f(n) < c ∗ g(n)))}

In the above definition, LittleO is a higher-order-logic function that accepts a function
g : num→ real as an argument and returns a set of functions such that every f growth rate is less than
the multiple of a constant c and function g, i.e., f(n) < c ∗ g(n). In algorithm analysis, little-o notation
is used to specify the strict asymptotic upper bound for the complexity of an algorithm.

Definition 5. ` ∀ g. LittleOmega (g : num→ real) =

{ (f : num→ real) | (∃ c n_0. (∀ n. n_0 ≤ n ⇒ 0 < c ∧ 0 ≤ c ∗ g(n) < f(n)))}

In the above definition, LittleOmega notation is a higher-order-logic function that accepts a
function g : num→ real as an argument and returns a set of functions such that the growth rate of
every function is greater than the multiple of a constant c and function g, i.e., c ∗ g(n) < f(n).

In algorithm analysis, little-ω notation is used to specify the strict asymptotic lower bound for the
complexity of an algorithm.

The above definitions in higher-order logic enable the reasoning of the correctness of their
properties in HOL-Light.

Formal Verification of Asymptotic Notations’ Properties

In this subsection, we present the formally verified properties of the asymptotic notations in
HOL-Light, based on the formal definitions given in the previous section.

We first present the formally verified theorems corresponding to the transitivity property of the
asymptotic notations:

Theorem 1. ` ∀ f g h., f ∈ BigO g ∧ g ∈ BigO h⇒ f ∈ BigO h

Theorem 2. ` ∀ f g h.
f ∈ BigOmega g ∧ g ∈ BigOmega h ⇒ f ∈ BigOmega h

Theorem 3. ` ∀ f g h.
f ∈ BigTheta g ∧ g ∈ BigTheta h ⇒ f ∈ BigTheta h

Theorem 4. ` ∀ f g h.
f ∈ Littelo g ∧ g ∈ Littelo h ⇒ f ∈ Littelo h

Theorem 5. ` ∀ f g h.
f ∈ Littelomega g ∧ g ∈ Littelomega h ⇒ f ∈ Littelomega h

In Theorems 1–5, f, g, and h are functions that accept an argument of type num and return a real
number. The transitivity property formally verifies the asymptotic relationship of two functions f and
h, given that their asymptotic relationship with function g is valid.

Next, we present the formally verified results for the reflexivity property of the Big-O, Big-Ω,
and Big-Θ:

Theorem 6. ` ∀ f. (∃ n0. (∀ m. n0 ≤ m⇒ 0 ≤ f m)⇒ (f ∈ BigO f))

Energies 2019, 12, 19 10 of 21

Theorem 7. ` ∀ f. (∃ n0. (∀ m. n0 ≤ m⇒ 0 ≤ f m)⇒ (f ∈ BigOmega f))

Theorem 8. ` ∀ f. (∃ n0. (∀ m. n0 ≤ m⇒ 0 ≤ f m)⇒ (f ∈ BigTheta f))

In the above theorems, f and g are functions that accept a number num as an argument and
return a real number. Theorems 6–8 are formally verified results which depict that any function f is
asymptotically related to itself for Big-O, Big-Ω, and Big-Θ notations.

The next property is related to the summation of the Big-O and Big-Ω notations and is formally
verified as:

Theorem 9. ` ∀ t1 t2 g1 g2.
(t1 ∈ BigO g1) ∧ (t2 ∈ BigO g2)

⇒ (λ n. t1 n + t2 n) ∈ (BigO (max (g1 , g2))

Theorem 10. ` ∀ t1 t2 g1 g2.
(t1 ∈ BigOmega g1) ∧ (t2 ∈ BigOmega g2)

⇒ (λ n. t1 n + t2 n) ∈ (BigOmega (min (g1 , g2))

In the above theorems, t1, t2, g1, and g2 are functions that accept an argument of type num and
return a real value. Theorem 9 formally verifies the fact that if two functions t1 and t2 are in the
Big-O of g1 and g2, respectively, then the sum of these two functions will also be in the Big-O of the
maximum of the g1 and g2 functions. It is due to the fact that the Big-O notation provides an upper
asymptotic bound for a function. Similarly, the sum of two functions t1 and t2, which are in the Big-Ω
of g1 and g2, will be in the Big-Ω of the minimum of the g1 and g2 functions. This is also due to the
fact that Big-Ω provides a lower asymptotic bound for a function.

Next, we present the formally verified symmetry property of the Big-Ω and Big-Θ notations:

Theorem 11. ` ∀ f g. f ∈ BigOmega g ⇒ g ∈ BigOmega f

Theorem 12. ` ∀ f g. f ∈ BigTheta g ⇒ g ∈ BigTheta f

In the above theorems, f and g are functions that accept an argument of type num and return a
real number. Theorems 11 and 12 formally verify that if the growth rate of a function f is related to
a function g through the Big-ω or Big-Θ notations, then the growth rate of g will also be related to f

through Big-ω or Big-Θ.
Next, we present the formally verified transpose symmetry property:

Theorem 13. ` ∀ f g. f ∈ BigO g ⇒ g ∈ BigOmega f

Theorem 14. ` ∀ f g. f ∈ Littelo g ⇒ g ∈ LittleOmega f

In the above theorems, f and g are functions that accept an argument of type num and return a real
number. Theorem 13 formally verifies that a function f whose growth rate is related to the function g

through Big-O notations will also satisfy the Big-Ω relationship between function g and f. Similarly,
Theorem 14 is formally verified for the functions related through little-o and little-ω.

Moreover, as the Big-O notation plays a vital role in the formal verification of online scheduling
algorithms for PEV charging, two frequently used properties of the Big-O notation are also verified.

Theorem 15. ` ∀ f g. f ∈ BigO g ⇒ ∀ k. (λ n. k ∗ f n) ∈ (BigO g)

Energies 2019, 12, 19 11 of 21

Theorem 15, formally verifies that for a function f whose growth rate is in the Big-O of a function
g, then a scalar (k) multiplication will not affect the relationship.

Theorem 16. ` ∀ t1 t2 g1 g2.
(t1 ∈ BigO g1) ∧ (t2 ∈ BigO g2)

⇒ (λ n. t1 n ∗ t2 n) ∈ (BigO (g1 ∗ g2))

On the other hand, t1, t2, g1, and g2 are functions that accept an argument of type num and return
a real number. Theorem 16 formally verifies that if two functions t1 and t2 are in O(g1) and O(g2),
respectively, then their multiplication will belong to the set O(g1 ∗ g2).

The above formalization allows for formally reasoning and verifying the computational
complexity of an algorithm. For this paper, we particularly use these results for the formal verification
of the online scheduling algorithms for PEV charging.

5. Formal Asymptotic Analysis of Scheduling Algorithms for PEVs

In this section, we present the formally verified results for the worst-case computational
complexity of the insertion sort algorithm, Online cooRdinated CHARging Decision (ORCHARD) [9]
and online Expected Load Flattening (ELF) algorithms [14].

5.1. Formal Analysis of Insertion Sort Algorithm

Sorting is a process of listing the items in some logical order, such as ascending, descending,
alphabetical, chronological, or even topological. There are many computer applications where sorting
is employed, such as searching, information retrieval, crunching, and data mining. Therefore, there
are a number of algorithms designed to accomplish the task, such as insertion sort, mergesort,
heapsort, counting sort, quicksort, and radix sort [16]. As the computational complexities of the
algorithms, selected as case studies in this paper, are originally computed using the insertion sort
algorithm, the formal analysis of these online scheduling algorithms, in this paper, is also based on
the insertion sorting algorithm. For a given input, the algorithm picks each entry and sorts the order
of the entry for a segment of input up to that entry and places it according to its desired logical
order. The algorithm repeats the procedure for all the entries of the input until the desired order is
achieved [16]. The computational complexity of the algorithm is the function of the input length n and
has an O(n2) worst-case asymptotic bound [16].

Algorithm 1 is a pseudocode describing the working of the algorithm [16]. It accepts a list of
objects—in our case, the information related to PEVs—for sorting its entries in an ascending order.
In Line 1, the FOR loop is used to perform sorting of the entries of the list, where n is the total length
of the input list A. The loop executes n times, and c1 is the cost associated to each execution of the FOR
loop statement. In Line 2, the current entry of the list is assigned as a key, which is a local variable used
for sorting a particular entry. The execution cost for this statement is considered c2 and it runs for n− 1
times as the body of a FOR or WHILE loop runs one time less than the loop statement. Next, in Line 3,
a local variable i is assigned the value of j− 1, and the execution cost of this statement is considered
c3 and it runs for n− 1 times as well. In Line 4, the WHILE loop is used to perform the comparison
test on the subarray A[1, ..., i]. This test expression is executed ∑n

j=2 tj times with an execution cost of
c4 for each run, where tj is the number of times the WHILE loop runs for the comparison of a specific
key. The expressions in the body of WHILE, i.e., Lines 5 and 6, are executed ∑n

j=2 tj − 1 times. Line 5
shifts the entry to one place in the right direction in the list A, given the conditions in the WHILE loop
are satisfied. Then, Line 6 updates the entry of the subarray for the comparison in the next iteration
of the WHILE loop, where c5 and c6 are the costs for each execution of these expressions. Finally, the
key is updated for the next iteration of the FOR loop in Line 7. The expression is also executed n− 1
times with a cost of c7 for each execution. The algorithm outputs a sorted array A in ascending order.
The running time complexity function T(n) is obtained by multiplying the cost of each execution,

Energies 2019, 12, 19 12 of 21

i.e., ci, with the total time steps each statement is expected to take in the procedure of sorting, and
then summing all of these products.

T(n) = c1n + c2(n− 1) + c3(n− 1) + c4

n

∑
j=2

tj

+c5

n

∑
j=2

(tj − 1) + c6

n

∑
j=2

(tj − 1) + c7(n− 1)

In the worst case, the steps of an algorithm are executed the maximum possible number of times
by the algorithm for performing the intended task.

T(n) = (
c4

2
+

c5

2
+

c6

2
)n2 − (c1 + c2 + c3 +

c4

2
+

c5

2

+
c6

2
+ c7)n− (c2 + c3 + c4 + c7)

Algorithm 1 Insertion Sort Cost Time Steps

Input: list A
1: for j = 2 to n c1 n

2: key = A[j] c2 n− 1
3: i = j− 1 c3 n− 1
4: while i > 0 and A[i] > key c4 ∑n

j=2 tj

5: A[i + 1] = A[i] c5 ∑n
j=2(tj − 1)

6: i = i− 1 c6 ∑n
j=2(tj − 1)

7: A[i + 1] = key c7 n− 1

The worst-case running time for an insertion sort algorithm is defined in higher-order logic as:

Definition 6. ` ∀ n c1 c2 c3 c4 c5 c6 c7.
i_sort_wc_t n c1 c2 c3 c4 c5 c6 c7 =

(c4
2 + + c5

2 + c6
2) n pow 2 − (c1 + c2 + c3

+ c4
2 + c5

2 + c6
2 + c7)n − (c2 + c3 + c4 + c7)

where c1, c2, c3, c4, c5, c6, and c7 are real constants that represent the cost of performing the
corresponding steps in the sorting algorithm, and n is the variable of type num representing the length
of the input list A.

Definitions 1–6 and the formally verified properties of the Big-O notation in Section 4 are used to
formally verify the computational complexity results for the insertion sort algorithm as follows:

Theorem 17. ` ∀ n c1 c2 c3 c4 c5 c6 c7.
0 < n ∧ 0 < c1 ∧ 0 < c2 ∧ 0 < c3 ∧
0 < c4 ∧ 0 < c5 ∧ 0 < c6 ∧ 0 < c7

⇒ (λ n. i_sort_wc_t n c1 c2 c3 c4 c5 c6 c7 ∈ BigO n pow 2)

In the above theorem, 0 < n ensures that the list is not empty, whereas 0 < ci ensures that the
execution cost associated with each expression is also not zero. Under these conditions, the above
theorem formally verifies that the worst-case computational complexity of the insertion sort algorithm
is O(n2).

Definition 6 and Theorem 17 play a vital role in the formal reasoning and verification of the
computational complexity results of the online scheduling algorithms for PEV charging in the
next sections.

Energies 2019, 12, 19 13 of 21

5.2. Online cooRdinated CHARging Decision (ORCHARD)

The “Online cooRdinated CHARging Decision (ORCHARD) algorithm” [9] considers the random
arrivals and departures of PEVs with random charging demands. The problem is formulated as a
convex optimization problem, which is a special class of mathematical optimization problems and
provides efficient and reliable optimal solutions due to its fairly complete theory [36], and it utilizes
the speed scaling technique [37] to optimally schedule the charging demands of PEVs. Speed scaling
is a power management technique that is widely used in computer and communication systems to
reduce energy consumption. In the seminal work by Yao et al. [37], the speed scaling problem is
cast as a scheduling problem in which the tasks, along with the release time, deadline, and amount
of work, are not only scheduled but also allocated processor speed. Yao et al. also presented two
online algorithms, i.e., average rate (AVR) and optimal available (OA), which learn about the tasks
when they are available. The AVR runs each task at an average speed, which in itself is a function of
the workload and time required to process the job, whereas OA schedules each task while assuming
no task in the future. The ORCHARD uses a variant of the OA algorithm, i.e., qOA [38], which
improves the results obtained from the OA algorithm. The ORCHARD algorithm solves the convex
optimization problem of charging PEVs whenever a PEV arrives or departs using the interior point
method. The computational complexity of the interior point method increases exponentially with an
increase in input size. To cater to this issue, the authors in [9] presented a low-complexity algorithm to
reduce the exponential computational complexity involved in the optimization problem.

The low-complexity routine in [9] exploits the structure of the optimal solution,
i.e., an optimization technique such as the interior point method essentially balances the total workload
for an optimal solution. Therefore, the proposed low-complexity routine balances the workload by
considering the interval density to quantify the amount of the workload in the respective intervals and
then shifts the load from high-density intervals to the adjacent interval with a low-density workload to
balance the workload, which results in the optimal solution.

Figure 4 depicts a worst-case scenario for an online scheduling problem for PEV charging. In the
worst-case scenario, the scheduler records N PEVs’ information at any time t, which consists of
their arrival and departure times (ai and fi, respectively) and charging demands di, for scheduling
purposes. In the worst-case scenario, when there are N PEVs at time t, with arrival and departure times
and charging demands to be scheduled, then there can be at most N possible intervals Ii. These N
intervals can, at most, lead to N2 possible adjacent intervals for load shifting wi, termed as time
windows [9], as shown in Figure 4.

Figure 4. Online PEV charging scheduling.

Algorithm 2 describes the main computational steps of the low-complexity routine. The data
required for the PEV low-complexity charging scheduling algorithm is the input, i.e., a set P,
a certain time interval τ, workload density ρi of each time window, and Sτ . P is the set of PEVs;
τ ∈W := w1, ..., wN2 is a member of the set W, whose members represent all possible time windows;
ρi =

1
δτ

∑Pi∈Sτ
di is the density of the workload of time window τ, which has length δτ ; Sτ ∈ P is the

Energies 2019, 12, 19 14 of 21

set representing the number of PEVs in time window τ. In Line 1, a WHILE loop is used that repeats
the procedure until all the PEVs are scheduled. For the worst case, it is assumed that the maximum
number of PEVs, i.e., N, are to be scheduled at anytime t, and, therefore, in the worst-case scenario,
the loop executes N times. In Line 2, a certain time interval τ of highest workload is calculated and
selected. This task can be accomplished using any sorting algorithm; however, we considered the
commonly used insertion sort algorithm, described above. For N PEVs, there could be, at most, N2

such time slots which are needed to be sorted and, therefore, for n = N2, it has a O(N4) worst-case
computational complexity, as mentioned in Algorithm 2. The sorting procedure depends on the input,
and, therefore, it is imparted to the computational cost of any algorithm, which justifies its inclusion in
the complexity analysis of the online scheduling algorithm.

Algorithm 2 Low-complexity Routine Worst-case

Input: P := P1, ..., PN , τ, ρτ = 1
δτ

∑Pi∈Sτ
di, Sτ ∈ P

1: while P 6= {} N

2: Determine the time interval, τ of the
highest intensity, i.e., ρτ O(N4)

3: Allocate the charging rate, x̂i, to all PEVs
such that ρτ = ∑Pi∈Sτ

x̂i
4: Set P := P\SI
5: Remove I from the time horizon

and update the departure, arrival
and residual demands

Line 3 assigns to every PEV a charging rate such that the total charging rate is bounded by the
maximum charging rate of the interval. In Lines 4 and 5, the algorithm removes the interval and
PEVs, which are scheduled, and updates the information for the next iteration. From Lines 3 to 5,
the computational cost is not taken into account due to the fact that the complexity associated with
these steps is not proportional to the input size. The resulting running time function for the algorithm
is then described in HOL-Light as:

Definition 7. ` ∀ N c1 c2 c3 c4 c5 c6 c7.
lcr_wc_t N c1 c2 c3 c4 c5 c6 c7 =

N ∗ i_sort_wc_t N pow 2 c1 c2 , c3 c4 c5 c6 c7

Definition 7 is a higher-order-logic description of the worst-case computational time of the
low-complexity algorithm for execution. N represents the number of times a WHILE loop is executed
for the worst-case scenario. The constants c1, c2, c3, c4, c5, c6, c7, and c8 represent the cost associated
with each step in the insertion sort algorithm, whereas N2 denotes the maximum number of intervals
that are possible in the worst-case scenario. The above definition is based on the function i_sort_wc_t
to incorporate the computational complexity due to sorting procedure in Algorithm 2.

Definitions 1, 6, and 7, along with the theorems related to the insertion sort algorithm,
i.e., Theorem 17, and the formally verified properties of the Big-O notation, given in Section 4, allow
us to formally verify the worst-case complexity result for the ORCHARD algorithm in HOL-Light
as follows:

Theorem 18. ` ∀ N c1 c2 c3 c4 c5 c6 c7.
0 < N ∧ 0 < c1 ∧ 0 < c2 ∧ 0 < c3

∧ 0 < c4 ∧ 0 < c5 ∧ 0 < c6 ∧ 0 < c7

⇒ lcr_wc_t N c1 c2 c3 c4 c5 c6 c7 ∈ BigO N pow 5

Energies 2019, 12, 19 15 of 21

The application of theorem proving, in this case, requires us to explicitly add all the required
specifications of assumptions under which the result holds true in the above theorem. For example,
the precondition on the number of intervals, i.e., 0 < N, in Theorem 16, is added to ensure that
the number of intervals is not zero, which is essential for the scheduling task. On the other hand,
the preconditions on the constants originate from the formalization of the worst-case scenario of the
insertion sort algorithm, presented in the previous section.

5.3. Low-Complexity Online Expected Load Flattening (ELF) Algorithm

The PEV charging scheduling problem has been formulated using the model predictive control
(MPC) approach by incorporating first-order statistics of the load on the grid in [14]. This enables
accounting for the potential uncertainties in the arrival and departure of PEVs to and from a charging
facility and the variation in the electricity load in the grid system. The online algorithm, in [14],
considers that the entire system is divided into T equal-length intervals, as shown in Figure 5.

Figure 5. Expected Load Flattening (ELF) algorithm.

The remaining charging demand of a PEV i which arrives at time k is defined as d̂k
i = di−∑k−1

t=ai
xit.

For the PEVs that have not arrived by time k− 1, the remaining charging demand is considered to be
equal to the charging demand of that PEV, i.e., d̂k

i = di. The total unfinished charging demand at time
slot k is defined as the sum of remaining charging demands of all the PEVs, d̃k

t = ∑i∈{i| fi=t} d̂k
i , ∀t.k, ..., T.

The total unfinished charging demand is, then, used to define the state of the system at time t as [14]

Dt = [lt, d̃t
t, d̃t

t+1, ..., d̃t
T] (1)

where lt represents the electricity demand excluding the PEV charging at time t. d̃t
t′

is the total

unfinished charging demand at time t that must be completed by time t
′
. Moreover, future load

demands at random arrival events, ξt, are represented as [14]

ξt = [ιt, γt
t, γt

t+1, ..., , γt
T] (2)

where ιt represents the base load at time t and γt
t′

represents the total unfinished charging demand that

arrives at time t and must be fulfilled by time t
′
. Finally, the first-order statistics of ξt are represented as

εt = [αt, βt
t, βt

t+1, ..., , βt
T] (3)

where αt = E[ιt] and βt
t′

= E[γt
t′
] are the expected values for the random variables representing

base load and total unfinished charging demands, respectively. The algorithm, using the state of the
system (1) and first-order statistical data (3) at every time slot, finds the near-optimal solution, s∗k , with
respect to the offline solution, r∗, to the optimization problem described in [14], as shown in Figure 5.
Conventionally, numerical methods, such as the interior point methods, are employed to find the

Energies 2019, 12, 19 16 of 21

solution at each stage k, which leads to an unbearable computational cost, especially in the case of
the large-scale integration of the PEVs with the grid system. Therefore, the authors in [14] used a
low-complexity Expected Load Flattening (ELF) algorithm to reduce the computational complexity.

The ELF algorithm relies on the load flattening characteristic of the optimal solution,
i.e., the standard numerical methods try to flatten the demand curve. Therefore, the ELF algorithm
tries to balance the charging demand among all the time slots k, ..., T, where T denotes total time stages
in the problem, to flatten the charging demand curve of PEVs. The ELF charging scheduling algorithm

incorporates the information of (1) and (3) in d̄t
′

t′′

d̄t
t′′

=

 d̃t
′

t′′
, for t

′′
= k, ..., T, t

′
= k

βt
′

t′′
, fro t

′′
= t

′
, ..., T, t

′
= k + 1, ..., T

(4)

Algorithm 3 provides the pseudocode of the ELF algorithm that describes the procedure and
computational steps required for the allocation of the charging rate to the PEVs at time slot k.

Algorithm 3 Expected Load Flattening (ELF) Worst-case

Input: Dk, εk, t = k + 1, ..., T
Output: Charging rate, sk, at time slot k

1: initialization i = 0 and j = 0
2: repeat

3: For all time slots, O(T2)
i = k, ..., T, j = i, ..., T, calculate

i∗, j∗=arg max
k≤i≤j≤T

{
∑

j
t′=i

(∑
j
t′′ = t′

d̄t
′

t′′
+ αt′)

j− i + 1
}

4: set

y∗={
∑

j

t′=i
(∑

j

t′′=t′
d̄t
′

t′′
+β

t′
)

j−i+1 }
5: delete time slots i∗, j̇∗ and relabel the existing

time slot t > j∗as t− j + i− 1
6: until i 6= k T
7: Set sk = y∗ − lk

The input to Algorithm 3 consists of the data required for the ELF algorithm, i.e., the total
unfinished charging demands as the system state Dk and the expected values of the random events
εt, to schedule the PEVs. The output of the ELF algorithm is the charging rate sk at time slot k. Line
1 initializes two variables, i.e., i and j. In Line 2, a control structure REPEAT-UNTIL is used that is
conditioned on the variable i to the index of the time slots, along with j, for the purpose of utilizing
information related to the remaining charging demands and first-order statistics of random events
d̄t

t′′
and load αt at time slot k. In the worst-case scenario, the condition of i 6= k may falsify after, at

most, T iterations; therefore, the complexity cost of Algorithm 3 is T. In Line 3, the algorithm tries to
find the index of the maximum load density based on the total load composed of the remaining and
expected charging demands of PEVs and the expected electricity load from sources other than the
PEVs. As aforementioned in the case of the ORCHARD analysis, this task is equivalent to sorting the
given intervals in descending or ascending order, which is usually performed using sorting algorithms.
We again considered insertion sort for this purpose, and, therefore, the worst-case computational cost
for the length of T intervals would be O(T2). Line 4—the maximum value of the charging demand,
which is equivalent to the maximum charging rate—is saved in the variable y for future use. In Line 5,
the time horizon and the charging demands are readjusted for the next iteration. Finally, in Line 7,
the candidate solution is obtained by removing the effect of load other than PEV charging demand.
Lines 4, 5, and 6 are not accounted for in the computational complexity analysis, as the operations

Energies 2019, 12, 19 17 of 21

performed in these lines do not scale with the length of the input, i.e., T. The resulting computational
complexity is described in HOL-Light as a theorem as follows:

Definition 8. ` ∀ T c1 c2 c3 c4 c5 c6 c7.
elf_wc_t T c1 c2 c3 c4 c5 c6 c7 =

T ∗ i_sort_wc_t T pow 2 c1 c2 c3 c4 c5 c6 c7

where T is the number of times the WHILE loop is executed for the worst-case scenario and, therefore,
also the maximum number of possible intervals. The above definition is based on the function
i_sort_wc_t to incorporate the computational complexity due to sorting procedure in Algorithm 3,
which accepts the number of intervals, i.e., T2, and real constants c1, c1, c2, c3, c4, c5, c6, and c7

representing the cost of execution of the expressions in Algorithm 1.
Definitions 1, 6, and 8, along with the theorems related to the insertion sort algorithm,

i.e., Theorem 17, and the formally verified properties of the Big-O notation, given in Section 4, allow us
to formally verify the worst-case complexity result for the ELF algorithm in HOL-Light as follows:

Theorem 19. ` ∀ T c1 c2 c3 c4 c5 c6 c7.
0 < T ∧ 0 < c1 ∧ 0 < c2 ∧ 0 < c3 ∧ 0 < c4 ∧ 0 < c5 ∧ 0 < c6 ∧ 0 < c7

⇒ elf_wc_t T c1 c2 c3 c4 c5 c6 c7 ∈ BigO (T pow 3)

The above theorem explicitly specifies the conditions on the variables, such as T and ci’s,
which are required for the computational complexity of the ELF algorithm, i.e., O(T3), to hold true.
This information can further be utilized in the implementation phase to avoid any subtle errors and
thus can enhance the security, reliability, and efficiency of the overall system.

The formalization in this paper provides a foundational framework for the formal verification of
the complexity of the online scheduling algorithms for PEV charging. We used the proposed method
to formally verify two such algorithms as Theorems 18 and 19 using the sound core of the HOL-light
theorem prover. The formal asymptotic analysis resulted in identifying various assumptions which
are necessary for the computational complexity results of these algorithms to be valid. It is important
to note that the proposed formalization can be used to formally model most of the commonly used
control structures of pseudocodes while conducting asymptotic analysis of algorithms. Moreover,
the reasoning support presented in this paper allows us to conduct the formal asymptotic analysis of
any algorithm almost automatically. These features make the proposed framework a very practical
framework for users with very little background in formal methods.

Asymptotic analysis is a fundamental tool for the design and analysis of algorithms [16],
in general. Therefore, the proposed formalization can be viewed as a primary resource to conduct
the formal asymptotic analysis and verification of algorithms designed using basic design strategies,
such as Brute force, dynamic programming, divide-and-conquer etc., for smart grids or elsewhere.
For example, the design of the ORCHARD and ELF algorithms can be verified using different sorting
algorithms, such as quicksort or mergesort, to compare the performance of these algorithms; this is
highly desirable before the implementation phase of these algorithms in the PEV-integrated grid system.
Although the proposed logical framework and methodology are aimed for formal asymptotic analysis,
in future, the formalization can be easily utilized for the formal verification of detailed and explicit
models of the scheduling problem for PEV charging, e.g., incorporating the charging rates, number
of PEVs, and computational cost utilized for performing the basic operations. The above-mentioned
formally verified results can be used to draw many useful insights about the given scheduling algorithm
in the presence of PEV loads. In order to illustrate this process, we used a fixed PEV load and increased
the cost of the operations of a scheduler so that the given algorithms approached their upper bound,
i.e., the worst-case computational complexity. The formally verified results, i.e., Theorems 18 and 19,
facilitate this analysis by providing all the conditions on the parameters readily available, which are
usually not known to the users or may need extensive trial and error runs to discover. Moreover,

Energies 2019, 12, 19 18 of 21

the cost of the operations are associated with the scheduler and, therefore, such an analysis can be
useful for estimating the development and deployment cost of the smart grid infrastructure at the early
stages of the design. We considered 30 schedulers with a random, but increasing, cost of operations
for performing the steps required in the ORCHARD and ELF algorithms. The number of PEVs for
ORCHARD and the time horizon for ELF were set at 1000. We ran each of the algorithms using these
cost functions to assess the effect on the worst-case computational complexity of the two algorithms.
The cost functions, shown in Figures 6a and 7a, i.e., i_sort_wc_ti, are defined using Definition 6, and
they represent the cost functions for each scheduler for sorting the array for scheduling purposes.
These functions were used to compute the computational complexity of the two functions defined
in Definitions 7 and 8. The Big-O for ORCHARD and ELF was mathematically modeled using
Definition 1, where C0 = max(max(ci)), and ci represents the constants for the i_sort_wc_ti function
and are randomly generated but satisfy the conditions specified in Theorems 18 and 19.

0 5 10 15 20 25 30
n

0

5000

10000

15000
max(c

i
)

(a)

0 200 400 600 800 1000
N

0

5

10

15
×1018

N * i_sort_wc_t
i

max(c
i
) * N5

(b)

Figure 6. Asymptotic behavior of the ORCHARD algorithm for increasing cost functions. (a) Cost
function of n ≤ 30 schedulers; (b) Asymptotic growth of n ≤ 30 schedulers.

0 5 10 15 20 25 30
n

0

2000

4000

6000

8000
max(c

i
)

(a)

0 200 400 600 800 1000
T

0

2

4

6

8
×1012

T * i_sort_wc_t
i

max(c
i
) * T3

(b)

Figure 7. Asymptotic behavior of the ELF algorithm for increasing cost functions. (a) Cost function of
n ≤ 30 schedulers; (b) Asymptotic growth of n ≤ 30 schedulers.

5.4. Simulation Results

Figures 6a and 7a show an increasing cost function for 30 schedulers, which were used for running
the two algorithms. On the other hand, Figures 6b and 7b show that with an increase in the operation
cost, the computational complexities of both algorithms approach their upper bound, i.e., Big-O.
The above analysis can be utilized to design schedulers by incorporating their real operations cost into
the cost models to meet the desired latency and quality of service in a PEV-integrated grid system at
early stages of the design.

6. Conclusions

In this paper, we present an approach for the formal asymptotic analysis of online scheduling
algorithms for PEV charging. In this regard, we developed a logical formalization of asymptotic
notations and formally verified their properties to assist the formal analysis of such algorithms.
To illustrate the usefulness of the proposed approach, we leveraged it to formally analyze the

Energies 2019, 12, 19 19 of 21

computational complexity of two state-of-the-art PEV scheduling algorithms, namely, the Online
cooRdinated CHARging Decision (ORCHARD) and online Expected Load Flattening (ELF) algorithms.
We also formally verified the insertion sort algorithm, which is an intermediate step for the complexity
analysis of online PEV charging algorithms. The distinguishing features of the proposed analysis work
include its accurate results due to the involvement of sound theorem proving and the availability of an
exhaustive set of assumptions that are required for the validity of the results. This exhaustive set of
assumptions was then utilized in the simulations to asses the effects of the cost of operations on the
upper bounds of the two algorithms.

Author Contributions: Conceptualization, F.A., N.B. and S.R.H.; Formal analysis, A.A.; Methodology, A.A. and
O.H.; Supervision, O.H.; Writing—original draft, A.A.; Writing—review & editing, O.H., F.A., N.B. and S.R.H.

Funding: This work is supported by ICT Fund UAE, fund number 21N206 at UAE University, Al Ain,
United Arab Emirates.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Cazzola, P.; Gorner, M. Global EV Outlook 2018 Towards Cross-Modal Electrification; International Energy
Agency: Paris, France, 2018; doi:10.1787/9789264302365-en.

2. Pasquier, M.; Mintz, J.M.M. IEA-HEV-TCP Task 24: Economic Impact Assessment of E-Mobility; International
Energy Agency: Paris, France, 2016.

3. Lopes, J.A.P.; Soares, F.J.; Almeida, P.M.R. Integration of electric vehicles in the electric power system.
Proc. IEEE 2011, 99, 168–183, doi:10.1109/JPROC.2010.2066250.

4. Guille, C.; Gross, G. A conceptual framework for the vehicle-to-grid (V2G) implementation. Energy Policy
2009, 37, 4379–4390.

5. Tang, W.; Jun, Y. Optimal Charging Control of Electric Vehicles in Smart Grids; Springer: Berlin, Germany, 2017;
doi:10.1007/978-3-319-45862-5.

6. He, Y.; Venkatesh, B.; Guan, L. Optimal scheduling for charging and discharging of electric vehicles.
IEEE Trans. Smart Grid 2012, 3, 1095–1105, doi:10.1109/tsg.2011.2173507.

7. Kurucz, C.; Brandt, D.; Sim, S. A linear programming model for reducing system peak through customer
load control programs. IEEE Trans. Power Syst. 1996, 11, 1817–1824, doi:10.1109/59.544648.

8. Soares, J.; Sousa, T.; Morais, H.; Vale, Z.; Faria, P. An optimal scheduling problem in distribution networks
considering V2G. In Proceedings of the 2011 IEEE Symposium on Computational Intelligence Applications
In Smart Grid (CIASG), Paris, France, 11–15 April 2011; pp. 1–8, doi:10.1109/ciasg.2011.5953342.

9. Tang, W.; Bi, S.; Zhang, Y.J.A. Online coordinated charging decision algorithm for electric vehicles without
future information. IEEE Trans. Smart Grid 2014, 5, 2810–2824, doi:10.1109/TSG.2014.2346925.

10. Zhang, T.; Chen, W.; Han, Z.; Cao, Z. Charging scheduling of electric vehicles with local renewable energy
under uncertain electric vehicle arrival and grid power price. IEEE Trans. Veh. Technol. 2014, 63, 2600–2612,
doi:10.1109/TVT.2013.2295591.

11. Ma, Z.; Callaway, D.S.; Hiskens, I.A. Decentralized charging control of large populations of plug-in electric
vehicles. IEEE Trans. Control Syst. Technol. 2013, 21, 67–78, doi:10.1109/cdc.2010.5717547.

12. Aghaei, J.; Alizadeh, M.I. Demand response in smart electricity grids equipped with renewable energy
sources: A review. Renew. Sustain. Energy Rev. 2013, 18, 64–72, doi:10.1016/j.rser.2012.09.019.

13. Tang, W.; Bi, S.; Zhang, Y.J. Online charging scheduling algorithms of electric vehicles in smart grid:
An overview. IEEE Commun. Mag. 2016, 54, 76–83, doi:10.1109/mcom.2016.1600346cm.

14. Tang, W.; Zhang, Y.J.A. A model predictive control approach for low-complexity electric vehicle
charging scheduling: optimality and scalability. IEEE Trans. Power Syst. 2017, 32, 1050–1063,
doi:10.1109/tpwrs.2016.2585202.

Energies 2019, 12, 19 20 of 21

15. Gerding, E.H.; Robu, V.; Stein, S.; Parkes, D.C.; Rogers, A.; Jennings, N.R. Online mechanism design for
electric vehicle charging. In Proceedings of the 10th International Conference on Autonomous Agents
and Multiagent Systems, International Foundation for Autonomous Agents and Multiagent Systems 2011,
Taipei, Taiwan, 2–6 May 2011; Volume 2, pp. 811–818.

16. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms Second Edition; The MIT Press:
Cambridge, MA, USA, 2001. Available online: http://web.ist.utl.pt/fabio.ferreira/material/asa/clrs.pdf
(accessed on 26 October 2018).

17. Graham, R.L.; Knuth, D.E.; Patashnik, O. Concrete Mathematics: A Foundation for Computer Science, 2nd ed.;
Addison-Wesley Longman Publishing Co., Inc.: Chicago, IL, USA, 1994.

18. Hasan, O.; Tahar, S. Formal Verification Methods. In Encyclopedia of Information Science and Technology,
3rd ed.; IGI Global: Hershey, PA, USA, 2015; pp. 7162–7170, doi:10.4018/978-1-4666-5888-2.ch705.

19. Qadir, J.; Hasan, O. Applying formal methods to networking: Theory, techniques, and applications.
IEEE Commun. Surv. Tutor. 2015, 17, 256–291.

20. Milica, B. The State-of-the-Art in Formal Methods. In AFOSR Summer Research Technical Report for Rome
Research Site; AFRL/IFGB: Wright, OH, USA, 1998.

21. Clarke, E.M.; Grumberg, O.; Long, D.E. Model checking and abstraction. ACM Trans. Program. Lang.
Syst. (TOPLAS) 1994, 16, 1512–1542.

22. Avigad, J.; Donnelly, K. Formalizing O notation in Isabelle/HOL. In International Joint Conference on Automated
Reasoning; Springer: Berlin/Heidelberg, Germany, 2004; pp. 357–371.

23. Deilami, S. Online Coordination of Plug-In Electric Vehicles Considering Grid Congestion and Smart Grid
Power Quality. Energies 2018, 11, 2187.

24. Rodrigues, E.; Godina, R.; Pouresmaeil, E.; Ferreira, J.; Catalão, J. Domestic appliances energy optimization
with model predictive control. Energy Convers. Manag. 2017, 142, 402–413.

25. Godina, R.; Rodrigues, E.M.; Pouresmaeil, E.; Catalão, J.P. Optimal residential model predictive control
energy management performance with PV microgeneration. Comput. Oper. Res. 2018, 96, 143–156.

26. Godina, R.; Rodrigues, E.M.; Pouresmaeil, E.; Matias, J.C.; Catalão, J.P. Model predictive control home
energy management and optimization strategy with demand response. Appl. Sci. 2018, 8, 408.

27. Buttazzo, G.C. Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Applications;
Springer Science & Business Media: Berlin, Germany, 2011; Volume 24.

28. MathWorks. Available online: https://ch.mathworks.com/products/new_products/release2016a.html
(accessed on 25 October 2018).

29. Huth, M.; Ryan, M. Logic in Computer Science: Modelling and Reasoning about Systems; Cambridge University
Press: Cambridge, UK, 2004; doi:10.1017/cbo9780511810275.

30. Harrison, J. The HOL Light Theorem Prover. Available online: http://www.cl.cam.ac.uk/~jrh13/hol-light/
(accessed on 12 September 2018).

31. Harrison, J.; Slind, K.; Arthan, R. HOL. In The Seventeen Provers of the World; Lecture Notes in Computer
Science; Springer: Berlin, Germany, 2006; Volume 3600, pp. 11–19, doi:10.1007/11542384_3.

32. Bertot, Y.; Castéran, P. Interactive Theorem Proving and Program Development: Coq’Art: The Calculus of
Inductive Constructions; Springer Science & Business Media: Berlin, Germany, 2013. Available online:
http://www.labri.fr/perso/casteran/CoqArt/ (accessed on 12 September 2018).

33. Owre, S.; Rushby, J.; Shankar, N. PVS: A Prototype Verification System. In Automated Deduction; Lecture Notes in
Computer Science; Springer: Berlin, Germany, 1992; Volume 607, pp. 748–752, doi:10.1007/3-540-55602-8_217.

34. Harrison, J. HOL Light: An overview. In International Conference on Theorem Proving in Higher Order Logics;
Springer: Berlin, Germany, 2009; pp. 60–66, doi:10.1007/978-3-642-03359-9_4.

35. Harrison, J. Floating-Point Verification. J. UCS 2007, 13, 629–638, doi:10.1007/978-1-4471-1591-5_7.
36. Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004;

doi:10.1017/cbo9780511804441.

http://web.ist.utl.pt/fabio.ferreira/material/asa/clrs.pdf
https://ch.mathworks.com/products/new_products/release2016a.html
http://www.cl.cam.ac.uk/~jrh13/hol-light/
http://www.labri.fr/perso/casteran/CoqArt/

Energies 2019, 12, 19 21 of 21

37. Yao, F.; Demers, A.; Shenker, S. A scheduling model for reduced CPU energy. In Proceedings of the
36th Annual Symposium on Foundations of Computer Science, Milwaukee, WI, USA, 23–25 October 1995;
pp. 374–382, doi:10.1109/SFCS.1995.492493.

38. Bansal, N.; Chan, H.L.; Pruhs, K.; Katz, D. Improved bounds for speed scaling in devices obeying
the cube-root rule. In International Colloquium on Automata, Languages and Programming; Springer:
Berlin/Heidelberg, Germany, 2009; pp. 144–155, doi:10.1007/978-3-642-02927-1_14.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Contribution of the Paper
	Organization of the Paper

	Preliminaries
	Theorem Proving
	HOL-Light Theorem Prover

	Proposed Methodology
	Formalization of Asymptotic Notations in HOL-Light
	Formal Asymptotic Analysis of Scheduling Algorithms for PEVs
	Formal Analysis of Insertion Sort Algorithm
	Online cooRdinated CHARging Decision (ORCHARD)
	Low-Complexity Online Expected Load Flattening (ELF) Algorithm
	Simulation Results

	Conclusions
	References

