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Abstract—The emerging trends in miniaturization of Internet
of Things (IoT) have highly empowered the Cyber-Physical
Systems (CPS) for many social applications especially, medical
imaging in healthcare. The medical imaging usually involves
big data processing and it is expedient to realize its clustering
after data acquisition. However, the state-of-the-art clustering
techniques are compute intensive and tend to reduce the process-
ing capability of battery-driven or energy harvested IoT based
embedded devices (e.g., edge and fogs). Thus, there is a desire to
perform energy efficient implementation of the machine learning
based clustering techniques. Since, the clustering techniques are
inherently resilient to noise and thus, their resilience can be
exploited for energy efficiency using approximate computing.
In this paper, we proposed approximate versions of the widely
used K-Means and Mean Shift clustering techniques using the
state-of-the-art low power approximate adders (IMPACT). The
trade-off between power consumption and the output quality is
exploited using five well-known pattern recognition datasets. The
experiments reveal that K-Means algorithm exhibits more error
resilience towards approximation with a maximum of 10% - 25%
power savings.

Index Terms—Cyber-Physical Systems, Internet of Things,
Approximate Computing, Clustering, Low Power Approximate
Adders, Energy Consumption, Computer Vision.

I. INTRODUCTION

Cyber-Physical Systems (CPS) are the key enablers for
the future trends in computer vision due to their exquisite
capability of interacting with the physical world through
communication, control and computation strategies [1]. The
smart homes, transportation and healthcare are some archety-
pal CPS applications which envision incorporating the smart
digital forensics, video surveillance and medical imaging.
Such broad applicability of the computer vision envisages
an immense expansion of Internet of Things (IoT) or CPS
devices and an unpredictable increase in the associated data
[2]. According to Gartner’s survey [3], the number of such
interconnected heterogeneous devices is expected to increase
around 75 billion by 2025, which will eventually result into
(around) 160 zettabytes of processing data. To handle such
huge data, the clustering based machine learning has recently
emerged as the de-facto analysis tool [4]. Besides reducing
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Fig. 1: The Tasks and Challenges in Image Clustering based Machine
Learning (ML), using Embedded IoT Devices, for Data Abstraction
and Regional Grading of Gliomas (Brain Tumor) in MRI.

the data volume, it is very helpful in image segmentation for
foreground extraction and object recognition. Fig. 1 illustrates
the clustering in Magnetic Resonance Imaging (MRI) for
dimensionality reduction and an efficient regional grading of
gliomas (brain tumors).

Although, the data clustering capitalizes the characteristics
of machine learning in IoT based CPS for big data ana-
lytics but the recent trend of high image resolution makes
the compute-intensive clustering techniques impractical for
embedded real-time applications [5]. The CPS devices (e.g
edge and fogs) are either battery operated or employ energy-
harvesting. They do not possess sufficient computational ca-
pabilities for machine learning and high resolution image
processing. Thus, it is an open research challenge to develop
an efficient clustering technique under low power envelope.

A. State-of-the-Art and Open Research Problems

The big data clustering is a simple data abstraction tech-
nique which maps the input data into different clusters having
more intra-cluster and less inter-cluster similarity [10]. It
models the image segmentation as pattern recognition by
exploiting the relationship between un-labeled data points and
heuristically searching for some interesting features in the



TABLE I: Feature Comparison with State-of-the-Art

Clustering techniques Energy Efficient Techniques Target Parameters
Approximate ComputingRelated Work Mean Shift Gaussian

Mixture Models Regression K-Means Others Adders Multipliers Mapping Power Accuracy Delay Testing Dataset

[5] X X X X Standard Images

[6] X X X
Segmentation
Evaluation Dataset

[7] X X X
USGS, CSN, BIGX,
SONG, KDD, WEB

[8] X X X X X X

3cluster, 3d3cluster,
4cluster, HangSeng
INDEX, NASDAQ,
S&P 500

[9] X X X X X Fisher Iris
ApproxCT X X X X X Standard Images

dataset. The widely used initial seed (number of clusters)
sensitive K-Means and less sensitive Mean Shift algorithms
exhibit the best image segmentation quality as compared to
other state-of-the-art clustering techniques (e.g., Fuzzy C-
Means and Gaussian Mixture Model) [11] [12]. However, their
exhaustive learning and iterative behavior impel these algo-
rithm to occupy a larger portion of FPGA and ASIC and drain
the battery subsequently. In the past, many efforts have been
made for accelerating the hardware designs but they contribute
to meager energy gains [5] [6] [7]. Towards this direction,
approximate computing has recently emerged as a promising
approach for energy efficiency especially, in combination with
other state-of-the-art low-power techniques [13]. It simplifies
the complex hardware of image processing by relaxing the
equivalence margin between specification and implementation.
V. K. Chippa et al. exploited the inherent error resilience in
clustering techniques [14] and proposed to use approximate
computing in image clustering. In [15], an energy efficient
framework for all kinds of error-tolerant iterative methods is
presented and validated through K-means clustering. However,
Q. Zhang et. al. claimed that it is quite impossible to have such
generalized framework [8]. The author presented approximate
computing as an application-specific energy saving strategy
and developed approximate Gaussian Mixture (GMM) model
using reconfigurable approximate adders [16]. However, it is
quite hard to initialize the clusters and segment the high di-
mensional data using GMM clustering. Recently, many inexact
arithmetic units [17] [9] have been designed which can also
be utilized for energy efficiency with slight accuracy loss. I.
Alouani et al. designed a low-power approximate multiplier
and used K-Means clustering as a case study for validating
its performance [9]. However, it is expedient to realize more
approximate computing in K-Means clustering for an adequate
on-board energy efficiency and compare its performance with
a superseding automated clustering, i-e., Mean Shift. Table I
highlights the comparison between our proposed approach and
prior state-of-the-art.

B. Motivational Analysis

The clustering techniques usually employ certain arithmetic
units (e.g., adders) to calculate Euclidean distance, mean, etc.
These additions increases with an increase in the number of
image pixels and clusters. This precept study infers larger
area over head and an exponential increase in the power

❑Which clustering Algorithm has more potential for approximate computing?

❑How to reduce their power consumption while maintaining the output quality?

0

5

10

15

20

25

30

481x321 640x256 720x360 1024x768 1024x1024 2048x1080#
 o

f 
A

d
d
it

io
n

s 
(M

il
li

o
n

s)

Image Resolutions

# of Additions in K-Means # of Additions in Mean Shift

Power consumption exponentially

increases with the increase in image

size and number of additions

Fig. 2: Motivational Analysis to show the Exponential increase in
Power Consumption with respect to Number of Additions and Image
Resolution in K-Means and Mean Shift Algorithms.
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❑How to exploit the error resilience in clustering algorithms for power efficiency?

❑How to ensure the validity of an error resilient and low-power approximate clustering?

Fig. 3: Error Resilience Analysis of K-Means and Mean Shift Algo-
rithms using Mean Centroid Distance as a Quality Metric [14]. The
white spaces in the slice plot shows that algorithms are tolerant to
the errors if the error rate is less than 1.

consumption (see Fig. 2). Hence, an energy efficient algorithm
for low-power ASIC implementation of clustering technique
is required. As illustrated in Fig. 3, K-Means and Mean Shift
algorithms inherit considerable error tolerance towards ap-
proximation. So, approximate computing is an optimal solution
for substantial power savings in image segmentation based
pattern recognition.

C. Research Challenges

The main research challenges in developing an approximate
computing based image clustering technique, for pattern recog-
nition, in IoT based CPS are:

1) Error Margin Exploration: Approximate computing is
an error inducing practice. So, the first question arises
that how much error resilience exist in an approximate
algorithm?



2) Accurate Pattern Recognition: How to exploit the
trade-off between output quality and power consumption
and ensure the validity of an approximate clustering
technique (ApproxCT) in pattern recognition?

3) Knob Controllability: Which context aware knobs can
be utilized in developing the low-power hardware for an
image clustering based pattern recognition?

D. Novel Contributions

This paper makes the following novel contributions:
1) A Generic Methodology for ApproxCT with design

space exploration and thus, enabling its multiple energy-
aware architectural versions.

2) A Comprehensive Performance Analysis of Ap-
proxCT framework, employing approximate K-Means
and Mean Shift clustering, using context-aware knobs
such as quality and power.

3) An ASIC Implementation of ApproxCT framework by
employing accurate and low-power approximate adders
(IMPACT).

4) A Comparative Analysis of the initial seed dependent
and independent clustering techniques.

In this paper, we exploited approximate computing in the
clustering techniques, i.e., K-Means and Mean Shift, using
an open-source IMPACT adders’ library [17], and compre-
hensively analyzed their performance on the basis of multiple
approximation knobs,like quality and power savings.

E. Paper Organization

The approximate computing based K-Means and Mean Shift
algorithms are discussed in Section II. Section III presents our
proposed methodology for ApproxCT modeling. Section IV
presents its experimental setup and tool flow. It also discusses
the performance evaluation of ApproxCT and provides a
comprehensive comparative analysis of the approximate and
accurate versions of K-Means and Mean Shift algorithms.
Finally, Section V concludes the paper.

II. APPROXIMATE IMAGE CLUSTERING

Approximate computing is an emerging paradigm which
leverages the intrinsic error resilience of an application to
find a trade-off between energy efficiency and quality [18]
[19]. At the hardware level, the approximate computing can be
explored in K-Means and Mean Shift algorithms by replacing
the accurate adders with their approximate counterparts.

A. Approximate K-Means Clustering

Like the traditional K-Means clustering method [20], the
approximate K-Means algorithm also refers to the most sim-
plest unsupervised machine learning algorithm which uses
Euclidean, Manhattan, City Block or Chess Board distance
to gather the input samples into multiple asymmetric clusters
(see Fig. 4). However, the Euclidean distance is the best
possible solution for minimizing the intra-cluster variance. The
summary of this iterative approximate clustering is provided
below:
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Fig. 4: The Initial Seed Dependent K-Means Algorithm.

1) In the first iteration (t = 1), the user specifies k number
of clusters and randomly defines their corresponding
centroids ’m’ as a set ’A’.

A = { m(t)
1 , m

(t)
2 , ... ,m

(t)
k } (1)

2) Then, the distance between pth sample ’x’ and the given
ith centroid is calculated. The sample having minimum
distance to the given centroid is assigned to the ith

cluster ’C’.

C(t) = { xp : || xp 	m
(t)
i ||

2
≤ || xp 	m

(t)
j ||

2
,∀ j }

(2)
where 	 represents the signed approximate addition.

3) In the third step, the centroids of the clusters ’Si’ are
updated as:

m
(t+1)
i =

1

| C(t)
i |

∑
xi∈C(t)

i

( x1 ⊕ x2 ⊕ . . . ⊕ xn ) (3)

where | Sti | is the number of samples ’x in cluster ’S’.
4) Finally, the standard squared error criteria is used for

the convergence [21]. If the error lies below certain
threshold (such that the centroids are shifted) then, the
algorithm repeat itself from step 2.

|| m(t)
i −m

(t−1)
i ||2 < ε,∀ i (4)

B. Approximate Mean Shift Clustering

Since, K-Means algorithm is very sensitive to the seeding
value (i.e., k) so, a non-parametric solution, without a-prior
knowledge of the input, is required (see Fig. 5). The Mean
Shift algorithm is labeled as un-supervised and thus, can be
used in autonomous applications. It works on the principle of
’window based mean centroid clustering’ as a gradient ascent
(on the density function). The summary of the approximate
Mean shift clustering method is given below:

1) In the first iteration (t = 1), the user specifies the size
of the window. Let, the window ’W’ is initialized with
n number of samples.
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w = { x(1)1 , x
(1)
2 , ... , x(1)n } (5)

2) Next, the mean shift vector m(w) is calculated as:

m(w) =

∑n
i=1 g ( d2 ( w(t), xn, H ) ) xi )∑n
i=1 g ( d2 ( w(t), xn, H ) )

−xt (6)

where
∑

and 	 indicates approximate addition, In addi-
tion, ’d’ and and ’g’ refers to the Mahalanobis distance
and a weight function derived from the Epanechnikov
kernel [22].

3) Now, the window ’w(t)’ is updated to ’w(t+1)’ with
reference to above written m(w).

4) Repeat the second step until the following condition is
true for a certain threshold.

d ( x(t), x(t+1), H ) < ε (7)

III. PROPOSED METHODOLOGY FOR APPROXCT

Fig. 6 illustrates the proposed methodology for ApproxCT
which consists of following three key steps:

A. Error Resilience Analysis

As approximate computing itself adds some imprecision to
the algorithms so, it is quite important to pre-evaluate the
resilience of the algorithmic computations for any random
noise. This analysis can be done by using the Application
Resilience Characterization Framework [14]. It partitions the
algorithm into error resilient and sensitive parts and identifies
the potential error resilient design parts for applying approxi-
mate computing.

B. Fixed Point Hardware Approximation

Since, the embedded systems, especially ASICs and FPGA,
do not support the floating point computations so, the foremost
step in designing an approximate clustering technique is fixed
point quantization. The algorithm is exhaustively tested for
different fixed point word lengths until the outcome of fixed
point implementation matches to that of the floating point
algorithm. The matching word length is used as a required
bit width for the approximate adders.
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Fig. 6: The Proposed Methodology for Approximate Clustering Tech-
niques.

C. Approximate Adders based Hardware Approximation

For the simple approximate hardware implementation, the
approximate adders serve as the best optimal solution. Each
IMPACT adder posses unique performance characteristics and
exhibits different error probabilities with varying number of
approximate bits [23]. So, the accuracies for all the possible
adders and bits configurations are obtained by exhaustively
evaluating all possibilities. Here, the number of approximate
bits are set as the percentage of the total number of bits and
initialized in a configuration array, which is given as an input
to the approximate adders library.

IV. RESULTS AND DISCUSSIONS

A. Experimental Tool Flow

For simulations and hardware designs, we used an Intel Core
i7-6700T Quad-Core server operating at 3.06 GHz with 32 GB
RAM. Fig. 7 presents our integrated tool flow. The precision
of the approximate clustering framework is first evaluated for
an application using MATLAB and then, its corresponding
behavioral design is developed in ModelSim. The synthesis
of the Verilog code generates a signal activity file (.saif)
which is fed into the Synospys Primetime Design Compiler
for generating the power reports.
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Fig. 7: Experimental Tool Flow of Approximate Clustering in Image
Segmentation.



B. Performance Measures

To evaluate the performance of the K-Means and Mean Shift
clustering methods we use the following three indices:

1) Silhouette Coefficient: If di is the average distance of a
sample to other samples in the same cluster and d

′

i corresponds
to the average distance of a sample to other samples in its
nearest neighboring cluster (see Fig. 8) then, the Silhouette
Coefficient (SC) can be defined as:

si =
d

′

i − di
max [ di, d

′
i ]

(8)

d(z3) = [ | z3 – z1 | + | z3 – z2 |] / 2

d’(z3) = [ | z3 – z4 | + | z3 – z5 | + | z3 – z6 |] / 3

si(z3) = [ d’(z3) – d(z3)  ] / MAX [d’(z3) , d(z3) ]

z1

z2

z3

z4

z7z5

z6

z8

z9
|z3 – z5| 

Fig. 8: An Example for Computing the Silhouette Coefficient.

The quality of clustering is determined by the average si
across all samples. The range of mean SC varies from -1 to
1, where SC ≈ 1 and SC ≈ −1 depicts the good and poor
quality of the clustering result, respectively [24].

2) Davies Bouldin Index: The Davies Bouldin (DB) index
is the ratio of the sum of within-cluster scatter to between-
cluster separation [24]. Let, the scatter within the ith cluster
’C’ is defined as:

Si =

∑
xεCi
|| x−mi ||
|Ci|

(9)

and the distance between cluster Ci and Cj , denoted by dij ,
is expressed as:

dij = || mi −mj || (10)

where mi and mj represents the mean centroids of ith and jth

clusters respectively. Then, the DB is defined as:

DB =

∑K
i=1 Ri,(t)

K
(11)

where

Ri,(t) = maxj,j6=i(
Si,q + Sj,q

dij,t
) (12)

Smaller the value of DB index, more better would be the
quality of the clustering methods.

3) Calinski Harabasz Index: For n number of samples
’x’ and k clusters, the Calinski Harabasz (CH) index [24] is
written as:

CH = (
trace B

k − 1
) / (

trace W

n − k
) (13)

where B and W represent between and within-cluster scatter,
respectively. The trace B and trace W can be calculated using
the following equations:

trace B =

k∑
i=1

ni || mi − M ||2 (14)

where M is the centroid of the entire dataset.

trace W =

k∑
i=1

n∑
j=1

k || xi − mk ||2 (15)

Higher the CH index, more better is the clustering result.

C. Selection of Dataset

For demonstrating the effect of approximate K-Means and
Mean Shift Algorithms in image processing applications, we
randomly selected fifteen 481 x 321 images (see Fig. 9) from
the ’D1’ Berkeley Segmentation database [25] and used ’D2’
Segmentation Evaluation [26], ’D3’ Stanford background [27],
’D4’ INIRA Holidays and ’D5’ INIRA Copydays [28] datasets
for extensive testing.

D. Performance Evaluation

1) Accuracy Analysis: For the qualitative and visual com-
parison of approximate K-Means and Mean-Shift algorithms,
the proposed model was tested to group the image pixels using
their density profile. The accuracy of this clustering approach
is calculated using a statistical error analysis approach [23].
Lets consider the left most image in Fig 9 which consists of
a lady and a child. Since, the number of K-Means clusters
are limited to the choice of the user so, it is fixed here (e.g.,
k = 3). However, the Mean shift algorithm itself divided the
image into 5 clusters. Fig. 10 shows that there is no reasonable
change in K-Means clustered images, in-spite of the imprecise
computations, while the affected region in Mean shift clustered
images are marked by red circles. The marked area shows that
the data points are distributed differently as compared to the
reference image. This analysis depicts that Mean shift does
not perform good at lower accuracies.

However, we cannot conclusively judge the quality of the
clustering results of the images in this way. For the quantitative
analysis, we exhaustively tested the approximate clustering
design, with different configurations of IMPACT adders and
the approximate bits, while sweeping the accuracy from 75%
to nearly 12%. In Fig.11, the average result (of fifteen images
in Fig. 9) is plotted for the SC as well as DB and CH indices.
A brief summary of this analysis is given below:

1) The accurate as well as approximate K-Means clustering
technique has SC index very close to 1 as compared



Fig. 9: Testing Sample Images (Resolution: 481 x321) from Berkley Segmentation Dataset.

K-Means – 100 % K-Means – 75 % K-Means – 37.5 % K-Means – 12.5 % Mean Shift – 100 % Mean Shift – 75 % Mean Shift – 37.5 % Mean Shift – 12.5 %

Fig. 10: The Qualitative Comparison of K-Means and Mean Shift Algorithms for multiple Accuracies Ranging from 12.5 % to 100 %.

to the Mean Shift segmentation. This confirms the
best clustering performance of approximate K-Means
clustering model.

2) The DB index is smaller for K-Means as compared to
Mean shift clustering in case of accurate as well as
inaccurate additions.

3) Similarly, the objective function for CH index is maxi-
mized (low CH index) in case of K-Means which also
supports our visual claim.

For K-Means, the variation in the results is 4.73 ± 3.23, 4.27
± 3.63 and 7.31 ± 6.50 for SC, DB index and CH index,
respectively. Likewise, the Mean Shift clustering has 10.816
± 3.34, 19.91 ± 6.36 and 9.73 ± 3.62 variations in the
results of SC index, DB index and CH index, respectively. It
can be concluded from these observations that the variation
in the results of K-Means clustering is less for all of the three
indices as compared to Mean shift. It means that K-Means
is more resilient towards approximation. These results are
further consolidated by calculating the average of results for
15 images. In this case, K-Means undergoes 3.96 ± 1.74,
6.02 ± 2.01 and 9.69 ± 3.64 variations for SC, DB index and
CH index respectively. Similarly, the variation in the Mean
Shift results of SC, DB index and CH index is 9.78 ± 4.12,
14.2 ± 4.62 and 10.55 ± 4.14 respectively.

2) Power Analysis: For the extensive testing of the pro-
posed approximate clustering strategy, we used fifteen scenic
images from each selected dataset and analyzed the results
at 25%, 20%, 15% and 10% power savings by choosing
different combinations of the IMPACT adders and approximate
bits. In case of the K-Means algorithm, it is evident from
Fig. 12 that the SC, CH index, DB index indicate poor
quality with 25% power saving. However, it is much better
at 10% power saving. So, it is evident that the results are
compromised a bit with approximation in K-Means algorithm

but higher power savings are guaranteed on contrary to Mean-
Shift clustering method. In other words, this trade-off between
power savings and accuracy can be used in accordance with
the user specifications.

V. CONCLUSION

In this paper, we proposed approximate K-Means and Mean
Shift clustering algorithms to synthesize power efficient image
processing applications. For demonstration, the open-source
IMPACT adders library is used instead of accurate adders
in the hardware design and the performance is evaluated for
pixel clustering, using density profile, in five widely adopted
image databases. From the results, it can be concluded that
both approximate K-Means and Mean Shift algorithms have
acceptable clustering quality with large power savings, (25%,
20%, 15% and 10%), despite of the design inaccuracies.
However, the approximate K-Means clustering experiences
comparatively less variations in the image quality. Therefore,
it is more advantageous to exploit approximate computing in
K-Means clustering with an appropriate initial seed.
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