
AAG: An Automatic Assertion Generation
Framework for RTL Designs

Shahid Ali Murtza, Osman Hasan and Kashif Saghar
School of Electrical Engineering and Computer Science

National University of Sciences and Technology (NUST)
Islamabad, Pakistan

Email:{smurtza.msee15seecs,osman.hasan,kashif.saghar}@seecs.nust.edu.pk

Abstract—Assertion Based Verification (ABV) has been shown
to be a very effective functional verification approach for digital
designs. ABV is usually employed by the verification engineers
by embedding assertions in the hardware description language
(HDL) code manually by studying the design and user provided
specifications. However, with the growing complexity of digital
systems, understanding different designs and specifications in
general and then writing assertions manually in particular has
become quite tedious. In this paper, we propose to alleviate these
issues by proposing AAG, i.e., an Automatic Assertion Generation
framework that accepts the Register Transfer Level (RTL) code
in Verilog, generates the corresponding randomized testbench
automatically and then generates the corresponding value change
dump (VCD) file from the simulation of RTL code using the
generated testbench. In the proposed verification framework, we
use GoldMine as an assertion generation engine. The paper also
explains, with help of case studies, how can verification engineers
benefit from AAG.

I. INTRODUCTION

The functional verification of modern day hardware designs
has become a great challenge due to their increasing design
complexity, growing design size, and short time-to-market.
Traditionally, the designers and verification engineers simulate
designs written in hardware description languages (HDLs),
like Verilog, along with their testbenches for functional verifi-
cation. This approach is quite time consuming and usually
results in missing the corner cases, since test benches are
usually biased based on the inclinations of the test engineers.
Moreover, the simulation approach cannot guarantee the ab-
sence of bugs in the design due to its inherent incompleteness.
As a result, bugs are detected at a later stage of the design
and verification flow, which can in turn lead to unforeseen
scenarios, like the Intel Pentium bug [1].
Formal verification methods [2] have been advocated to over-
come the above-mentioned limitations of simulation based
verification. Model checking [2], [3], automated theorem
proving [2] and interactive theorem proving [2] techniques
have all been used for the verification of digital designs.
However, all of these formal verification based approaches
do not have a well defined methodology/language to express
the specification to facilitate and better communicate between
the design and verification processes. Lack of such important
facility poses a big challenge for verification engineers in accu-

rately specifying what is to be verified and tested. Moreover,
the state-based model checking and the automated theorem
proving based techniques cannot cater for large designs due
to their inherent state-space explosion problem [4] and the
high computational requirement issues [5], [6], respectively.
Similarly, the higher-order-logic theorem proving based ap-
proaches require a significant amount of manual effort [5] or
are limited to a subset of digital designs, like combinational
circuits [6].

Assertion Based Verification (ABV) [7] has recently
emerged as a promising verification tool for hardware verifica-
tion as it can cater for most of the above-mentioned limitations.
ABV uses well-defined temporal language expressions, called
assertions, for the specification of the design requirements in
a well-defined way. These assertions can then be checked for
a given design using the standard simulation based testing
approach. ABV has been known to detect bugs in early stages
of design flow, improving observability of design and con-
trollability of verification process [8]. It also helps designers
and verification engineers to better understand/communicate
during the various design and verification stages [9].
However, writing assertions manually itself is a big chal-
lenge. This becomes an impeding factor in the verification
process when the specifications to be verified are complex
and temporal ones. To overcome this issue, many attempts
to generate assertions automatically have been made [8]–[17].
GoldMine [10] is one of the most efficient automatic assertion
generation engines. It works with the Verilog register transfer
level (RTL) code and its simulated data in VCD format for
its data mining algorithms to generate the assertions. But, the
quality of assertion generation, using this tool totally depends
upon the simulation data provided, which in turn relies upon
the quality of the testbench used to simulate the RTL design.
In order to enhance the quality of assertion generation for
ABV, we propose a simple framework that helps the ABV
users to create a useful testbench using an easy to use GUI
automatically and then simulate the design in order to get the
VCD file that is required by GoldMine. Based on the ideas of
randomized testing, we ensure to generate effective assertions
that are likely to catch corner cases and not biased by the test
engineers opinions and inclinations. For illustration purposes,
we present a couple of case studies on the verification of 2-bit
Magnitude Comparator and BCD to Excess-3 Code Converter978-1-5386-1370-2/18/$31.00 c©2018 IEEE



circuits. The verification results for these case studies clearly
demonstrate the effectiveness of the proposed approach for an
industrial setting.

II. RELATED WORK

As it has been very difficult and tedious job to write the as-
sertions manually, the researchers, in the hardware verification
domain, have come up with different methodologies to extract
assertions automatically from the hardware designs. Currently
two main approaches are being used to automate the assertion
extraction process: Simulation based approaches [9], [10],
[15]–[17], which require the simulation traces generated by
the design simulation to automatically generate assertions, and
Specification based approaches [8], [11]–[14], which involve
the translation of natural language statements into assertions,
which verify the behavior of the candidate design with the
specifications defined by the industry standard.

First we focus on the specification based approaches that
are used in the hardware domain. Li et al. [11] proposed to
generate SystemVerilog (SV) code with assertion support from
the Unified Modeling Language (UML) based hardware design
description. Schweikert et al. [12] proposed an automatic
approach to generate assertions using Sequence Diagrams
(SD) to verify RTL designs. The SD can generate messages
about the one clock cycle behaviors. Silva et al. [14] proposed
a new approach that along with SD employs Finite State
Machines (FSMs) in the specification. In this approach, FSMs
are modeled with State Chart eXtensible Markup Language
(SCXML) and UML sequence diagrams (SD). Lee et al. [13]
proposed a Message Sequence Charts (MSCs) based approach
to generate SystemVerilog Assertions (SVAs). Almost all of
the above-mentioned specification based techniques involve
different representation of the given design prior to generate
assertions. These representations, using UML, MSCs, SCXML
and SD, are not common among hardware engineers and
require the user to be aware of their usage. This is why
these techniques despite their promising results are not adopted
widely in the hardware community. A combination of VCD
file format (emulation) and Timing Diagram Markup Language
(TDML) format is used in [8] to alleviate the above-mentioned
difficulty in the specification based assertion generation ap-
proaches. However, this technique requires the user to be
familiar with timing diagram standards and related tools.

Now, we describe the existing simulation based approaches:
Zhang et al. [9], used exhaustive search based Automatic
Test Pattern Generation (ATPG) for assertion generation. They
claim to get 100% design space coverage by employing the
ATPG algorithm PODEM (Path Oriented Decision Making).
However, the scope of this approach is limited to combi-
national circuits only. Rogin et al. [15], proposed automatic
property extraction using testbenches. The method, first, ex-
tracts the likely properties using the simulation traces and
design signals, and then, the candidate properties are combined
and checked considering their temporal dependence using
simulation. But this method is highly dependent on simulation
patterns. Hangal et al. [16] presented, the IODINE tool, which

primarily uses a template based dynamic analysis approach
to generate assertions from design simulations. Their set of
templates includes one-hot, request-acknowledge and mutual
exclusion. Moreover, the clocking and reset scheme for the
design has to be specified manually to guide the analyzers.
Chang et al. [17] employed a sequential data mining approach
to extract hardware assertions. Their technique views assertion
extraction as a stand-alone problem and therefore requires the
signal selection from the simulation traces in the preprocessing
stage by user using domain knowledge for design. Vasudevan
et al. [10] combined data mining and static analysis techniques
to develop a tool, called GoldMine, to generate assertions from
RTL designs and their simulation traces. The users can input
their own simulation data/testbenches or the tool generates
it using the Data Generator module, which employs its own
random testbench generator. However, the testbench, created
by the Data Generator module, does not always guarantee
to generate meaningful test patterns. This limits the use of
GoldMine because the data miner depends upon the simulation
traces generated by the Data Generator. Although GoldMine
cannot generate unbounded temporal assertions due to the limit
put by the simulation but it is found that it can generate
assertions with sufficiently high coverage [18]. The tool is
entirely automatic and also has been enhanced to evaluate
assertions based upon fault coverage [19]. The problem of
temporal assertions has been addressed in [20], but their
technique still needs improvements as they are unable to verify
the liveness property, which involves eventually operator.

III. PROPOSED METHODOLOGY

The proposed approach to implement the ABV framework
is depicted in Figure 1. The framework has four main blocks:
Automatic Testbench Generator, HDL Simulator, Assertion
Generation Engine (AGE), and Formal Verifier. Each block
depends upon the previous block’s output to work in the
proposed flow starting with an RTL Verilog code file. The
description of each block is given below:

A. Automatic Testbench Generator

The first block of our proposed framework uses an automatic
Verilog testbench generator, VerTGen [21], for the given
Verilog code. VerTGen is a GUI based automatic random test-
bench generator tool for Verilog models. It is a user friendly
tool that supports all of the major probability distributions to
be selected for random pattern generations. It can be used
to generate testbenches for both combinational and sequential
circuits. In this paper, we extend this tool to make it more
useful in our framework by including the feature to provide
the Verilog code lines required to dump the simulation data
in the VCD format that allows us to work with the Goldmine
tool. The lines added in VerTGen generated testbench to dump
simulation data has following signature:

$dumpfile("moduleName.vcd");

In the above statement, moduleName represents the name
of the module, top module or some submodule, for which the



data dumping is to be done in the simulation phase. The name
of output VCD file is given the same name as of the module
to ease the process in next steps.

$dumpvars(0,moduleName_bench.moduleName_);

The moduleName_bench represents the testbench file name,
moduleName_ is an instantiation of the Verilog module for
which we need the variable dumping. This above code line
directs the simulator to the variables to be dumped during
a running simulation. The naming convention adopted in the
VerTGen testbench allows us to automate the next steps.
The output of this block is a randomized Verilog testbench file
for the given RTL code.

Fig. 1. Proposed Methodology

B. HDL Simulator

The main purpose of this block is to get the initial simulation
data required for the GoldMine AGE. GoldMine requires
simulation data of the RTL code as a VCD file. This block is
basically a Verilog HDL simulator that supports the Verilog
simulation data dumping in the VCD file format. It takes two
inputs: Verilog RTL design and its testbench. Any Verilog
simulator, like ModelSim or Synopsys VCS, that supports
the functional simulation of the input RTL code can fit this
role. The output of this block is a VCD file containing the
simulation data.

C. Assertion Generation Engine (AGE)

This block basically comprises of the GoldMine AGE. This
is an automatic assertion generation engine that takes the RTL

code along with its simulated data. The GoldMine AGE basic
modules include a static analyzer and a data miner for assertion
generation. The static analyzer takes RTL code, analyses it
for domain specific information and acts as guidance tool for
the data miner. GoldMine uses A-Miner as data miner, which
takes simulated data in the VCD format. A-Miner works on
different supervised learning algorithms and pattern matching
to generate assertions. It is important to note that the GoldMine
AGE generates SystemVerilog Assertions (SVA) for the input
Verilog RTL code that truly depends upon the simulated data
in the VCD file. This block outputs assertions and different
metrics related to the quality of the generated assertions as
well. These assertions may contain some false assertions as
the estimation by the data miner can be wrong.

D. Formal Verifier

Since GoldMine generates likely assertions, therefore, some
formal verification tool is required to extract the true assertions
out of the likely assertions generated by GoldMine. GoldMine
itself provides the facility to integrate Cadence IFV to be
used for this purpose. The main role of the formal verifier
block is to extract true assertions in an iterative manner. It
generates counterexamples for all the failing assertions that
do not qualify as true assertions. The passed assertions, i.e.,
the set of true GoldMine generated assertions, are guaranteed
to capture functional behavior of the given design.

IV. CASE STUDIES

A. Case Study 1: 2-Bit Magnitude Comparator

In order to explain the flow of the proposed framework,
we first present an easy to understand example of a 2-bit
magnitude comparator. The block diagram, given in Figure
2, shows that the considered comparator module takes two
2-bit numbers as an input: A1, A0 are most significant bit
(MSB) and least significant bit (LSB) of the first number,
respectively, and similarly, B1 and B0 represent the MSB and
LSB of the second number, respectively. The Verilog code of
the comparator is shown in code Listing 1.

Fig. 2. 2-Bit Magnitude Comparator Block Diagram

Listing 1. Verilog main module
//-----------------------------------------------
// Case Study 1: 2-bit Magnitude Comparator
//-----------------------------------------------
module Compar2(A_lt_B, A_gt_B,A_eq_B, A1, A0, B1, B0);



input A1,A0, B1, B0;
output A_lt_B, A_gt_B, A_eq_B;

assign A_lt_B = ({A1,A0} < {B1 ,B0});
assign A_gt_B = ({A1,A0} > {B1 ,B0});
assign A_eq_B = ({A1,A0} == {B1,B0});

endmodule
//--------------------------------

As stated earlier that one of the distinguishing features of
the proposed framework is that it allows the user to start with
just the Verilog design file. Starting with the Verilog code, the
flow of the proposed framework is explained as the following
steps.

1. The first step is to generate the testbench of the given
Verilog design using the VerTGen GUI. This step gen-
erates a randomized testbench with many flexible user
defined options, like random distribution selection, seed
value and input variable range assignment etc. Also
the VerTGen generated testbench contains the necessary
code lines to dump the simulation data in the required
VCD format. The testbench generated by VerTGen is
given in Listing 2.

Listing 2. Testbench for 2-bit Magnitude Comparator
//-----------------------------------------------
// Testbench for 2-bit Magnitude Comparator
//-----------------------------------------------
‘define SEED_INIT 1510035665
module comparator_2_bench;
reg A1,A0, B1, B0;
wire A_lt_B, A_gt_B, A_eq_B;
reg [31:0] seed;
integer in, out, r;

comparator_2 comparator_2_(A_lt_B, A_gt_B,A_eq_B, A1, A0,
B1, B0);

integer i_loop;
initial begin
in = $fopen("seed.txt","r");
if(in==0)
seed=‘SEED_INIT;
else begin
r={$fscanf(in," %b\n",seed)};
$fclose(in);
end
for( i_loop = 0; i_loop < 10000; i_loop = i_loop +1) begin
#5 A1 = {$random(seed)};
#5 A0 = {$random(seed)};
#5 B1 = {$random(seed)};
#5 B0 = {$random(seed)};
#10;
end
out = $fopen("seed.txt","w");
$fwrite(out," %b\n",seed);
$fclose(out);
end
initial begin
#10;
$display("Simulation Result are as follows:");
$monitor("A_lt_B: %b , A_gt_B: %b ,A_eq_B: %b , A1: %b ,

A0: %b , B1: %b , B0 : %b ",A_lt_B, A_gt_B,A_eq_B, A1
, A0, B1, B0);

end
initial begin
$dumpfile("<PATH TO SAVE>/comparator_2.vcd");
$dumpvars(0, comparator_2_bench.comparator_2_);
#100000 $finish;
end

endmodule
//-----------------------------------------------

2. The next step is to simulate the Verilog design using
the testbench generated in the previous step. We used
the ModelSim Starter version for our example. Upon
successful simulation, we get the VCD file containing
all the simulated data.

3. Now, we run the assertion generation tool of Goldmine
on the files generated in the last step. Upon success-
ful execution, the invoked tool generates the required
assertions and its rank related metrics. In this case
study, the tool generated a total of 24 assertions for
variables A_lt_B, A_gt_B and A_eq_B. For each variable,
it generated 8 likely assertions. For the sake of brevity,
we have shown the generated assertions for A_eq_B only
in Listing 3.

4. To extract the true assertions from the set of likely
assertions, the next step is to pass them to the formal
verifier. GoldMine allows us to modify its configura-
tion file to set the path and license information for
Cadence IFV so that it can extract the true assertions
automatically after the previous steps. After the path and
license information is set in the GoldMine configuration
file, then the assertions that pass the test are labeled as
verified assertions, and the ones that fail are reused for
counterexample generation.

Listing 3. Assertions by GoldMine
//-----------------------------------------------
// Case Study 1: Assertions generated for A_eq_B
//-----------------------------------------------
reg clk;
always @ (posedge clk)
begin
gm0 : assert property ( ( A0 == 1 && B0 == 0 ) |-> (

A_eq_B == 0 ) );
gm1 : assert property ( ( A0 == 0 && B0 == 1 ) |-> (

A_eq_B == 0 ) );
gm2 : assert property ( ( A1 == 1 && B1 == 0 && B0 == 0 )

|-> ( A_eq_B == 0 ) );
gm3 : assert property ( ( A1 == 1 && B1 == 0 && B0 == 1 )

|-> ( A_eq_B == 0 ) );
gm4 : assert property ( ( A1 == 0 && B1 == 1 ) |-> (

A_eq_B == 0 ) );
gm5 : assert property ( ( A1 == 0 && A0 == 0 && B1 == 0 &&

B0 == 0 ) |-> ( A_eq_B == 1 ) );
gm6 : assert property ( ( A1 == 0 && A0 == 1 && B1 == 0 &&

B0 == 1 ) |-> ( A_eq_B == 1 ) );
gm7 : assert property ( ( A1 == 1 && A0 == 0 && B1 == 1 &&

B0 == 0 ) |-> ( A_eq_B == 1 ) );
gm8 : assert property ( ( A1 == 1 && A0 == 1 && B1 == 1 &&

B0 == 1 ) |-> ( A_eq_B == 1 ) );
end
//--------------------------------

B. Case Study 2: BCD to Excess-3 Code Converter

This case study showcases the assertion generation for se-
quential circuits by GoldMine using the proposed framework.
The circuit considered here is a binary-coded decimal (BCD)
to Excess-3 code converter using Mealy FSM. It is a serial
converter, which takes four bits of BCD code from LSB



to MSB serially and returns the corresponding four bits of
Excess-3 code. The conversion table and the state diagram
of FSM representing the behavior of BCD to Excess-3 code
converter are given in Figure 3.

(a) Conversion Table (b) State Diagram of FSM

Fig. 3. BCD to Excess-3 Code Converter: Conversion Table and FSM

The Verilog RTL code for this case study is provided in
Listing 4. The input x designates the bit of the BCD code and
the corresponding output to that bit is given out by variable
x. The variable pstate represents the present state of the FSM.
The FSM has seven states, designated from S0 to S6, as
depicted in Figure 3(b).

Listing 4. BCD to Excess-3 Code
//-------------------------------------------
// Case Study 2: BCD to Excess-3
//-------------------------------------------
module BCD_to_Excess_3 (y, x, pstate, clk, reset);
output y, pstate;
input x, clk, reset;
parameter S0 = 3’d0, S1 = 3’d1, S2 = 3’d2,
S3 = 3’d3, S4 = 3’d4, S5 = 3’d5,
S6 = 3’d6;
reg[2: 0] pstate, nxtstate;
reg y;
always @ (posedge clk or negedge reset)
if (reset== 0) pstate <= S0;
else pstate <= nxtstate;
always @ (pstate or x)
begin
case (pstate)
S0: if (x)
begin nxtstate = S4; y = 0; end
else
begin nxtstate = S1; y = 1; end
S1: if (x)
begin nxtstate = S5; y = 0; end
else
begin nxtstate = S2; y = 1; end
S2: begin nxtstate = S3; y = x; end
S3: begin nxtstate = S0; y = x; end
S4: begin nxtstate = S5; y = x; end
S5: if (x)
begin nxtstate = S6; y = 0; end
else
begin nxtstate = S3; y = 1; end
S6: begin nxtstate = S0; y = !x; end

default: begin nxtstate = 3’dx; y = x; end
endcase
end
endmodule
//--------------------------------

Following similar steps as done in Case Study 1, the
framework generated assertions for output signal y of the RTL
code are listed in Listing 5. GoldMine generated a total of
22 assertions for this case. It can be seen that the assertions
generated in this case study are complex and have clock cycles
information related to signal values. For example, consider
assertion gm0 in the Listing 5. This assertion says that if the
value of pstate is 010 (S2) or 000 (S0) and x=1, and after 2
clock cycles if x=1 then the output bit y will be 0. This can be
compared from the state diagram of the FSM in Figure 3(b)
for illustration purposes.

Listing 5. Assertions by GoldMine
//--------------------------------------------------
// Case Study 2: Assertions for output y
//--------------------------------------------------
always @ (posedge clk)
begin
no_reset: assume property ( reset == 1 );
gm0 : assert property ( ( pstate[2] == 0 && pstate[0] == 0

&& x == 1 ) ##2 ( x == 1 ) |-> ( y == 0 ) );
gm1 : assert property ( ( pstate[2] == 1 && pstate[0] == 1

) ##2 ( x == 1 ) |-> ( y == 0 ) );
gm2 : assert property ( ( pstate[1] == 1 ) ##1 ( x == 0 )

##1 ( x == 1 ) |-> ( y == 0 ) );
gm3 : assert property ( ( pstate[1] == 0 && x == 1 ) ##1 (

x == 1 ) ##1 ( x == 1 ) |-> ( y == 0 ) );
gm4 : assert property ( ( pstate[2] == 0 && pstate[1] == 0

&& pstate[0] == 1 && x == 0 ) ##2 ( x == 0 ) |-> ( y
== 0 ) );

gm5 : assert property ( ( pstate[1] == 0 && pstate[0] == 0
&& x == 0 ) ##1 ( x == 0 ) ##1 ( x == 0 ) |-> ( y ==
0 ) );

gm6 : assert property ( ( pstate[1] == 1 && pstate[0] == 1
) ##1 ( x == 1 ) ##1 ( x == 0 ) |-> ( y == 0 ) );

gm7 : assert property ( ( pstate[2] == 1 && pstate[1] == 0
&& pstate[0] == 0 ) ##1 ( x == 1 ) ##1 ( x == 1 )
|-> ( y == 0 ) );

gm8 : assert property ( ( pstate[2] == 0 && pstate[1] == 1
&& pstate[0] == 0 ) ##1 ( x == 1 ) ##1 ( x == 1 )
|-> ( y == 0 ) );

gm9 : assert property ( ( pstate[2] == 1 && pstate[0] == 0
&& x == 1 ) ##1 ( x == 1 ) ##1 ( x == 0 ) |-> ( y ==
0 ) );

gm10 : assert property ( ( pstate[2] == 0 && pstate[0] ==
0 && x == 1 ) ##2 ( x == 0 ) |-> ( y == 1 ) );

gm11 : assert property ( ( pstate[2] == 1 && pstate[0] ==
1 ) ##2 ( x == 0 ) |-> ( y == 1 ) );

gm12 : assert property ( ( pstate[1] == 1 ) ##1 ( x == 0 )
##1 ( x == 0 ) |-> ( y == 1 ) );

gm13 : assert property ( ( pstate[1] == 0 && pstate[0] ==
0 && x == 0 ) ##1 ( x == 1 ) ##1 ( x == 0 ) |-> ( y
== 1 ) );

gm14 : assert property ( ( pstate[1] == 1 && pstate[0] ==
1 ) ##1 ( x == 1 ) ##1 ( x == 1 ) |-> ( y == 1 ) );

gm15 : assert property ( ( pstate[2] == 0 && pstate[1] ==
0 && pstate[0] == 1 && x == 0 ) ##2 ( x == 1 ) |-> (
y == 1 ) );

gm16 : assert property ( ( pstate[1] == 0 && pstate[0] ==
0 && x == 0 ) ##1 ( x == 0 ) ##1 ( x == 1 ) |-> ( y
== 1 ) );

gm17 : assert property ( ( pstate[1] == 0 && pstate[0] ==
0 ) ##1 ( x == 1 ) ##1 ( x == 0 ) |-> ( y == 1 ) );

gm18 : assert property ( ( pstate[2] == 0 && pstate[0] ==
0 && x == 0 ) ##1 ( x == 1 ) ##1 ( x == 0 ) |-> ( y



== 1 ) );
gm19 : assert property ( ( pstate[1] == 0 && x == 1 ) ##1

( x == 1 ) ##1 ( x == 0 ) |-> ( y == 1 ) );
gm20 : assert property ( ( pstate[2] == 1 && pstate[1] ==

1 ) ##1 ( x == 1 ) ##1 ( x == 1 ) |-> ( y == 1 ) );
gm21 : assert property ( ( pstate[2] == 0 && pstate[1] ==

0 ) ##1 ( x == 0 ) ##1 ( x == 1 ) |-> ( y == 1 ) );
end
//--------------------------------

V. CONCLUSIONS

In this paper, we presented a semi-automatic hardware
verification framework, which employs randomized testing
along with assertions to get a better insight into the design
and its bugs. The proposed methodology uses VerTGen for
randomized testbench generation and GoldMine for automatic
assertion generation for a given RTL circuit. The methodology
is easy to adopt and time saving due to its automatic nature. In
this work, we have also showcased the ability of the framework
to generate assertions effectively for both combinational and
sequential circuits.

REFERENCES

[1] T. Coe, “Inside the pentium-fdiv bug,” DR DOBBS JOURNAL, vol. 20,
no. 4, p. 129, 1995.

[2] O. Hasan and S. Tahar, “Formal verification methods,” in Encyclopedia
of Information Science and Technology, Third Edition, pp. 7162–7170,
IGI Global, 2015.

[3] B. Bèrard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci,
and P. Schnoebelen, Systems and software verification: model-checking
techniques and tools. Springer Science & Business Media, 2013.

[4] C. Baier, J.-P. Katoen, et al., Principles of model checking,
vol. 26202649. MIT press Cambridge, 2008.

[5] W. Bibel, Automated theorem proving. Springer Science & Business
Media, 2013.

[6] S. Shiraz and O. Hasan, “A hol library for hardware verification using
theorem proving,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. PP, no. 99, pp. 1–1, 2017.

[7] K. Datta and P. Das, “Assertion based verification using hdvl,” in VLSI
Design, 2004. Proceedings. 17th International Conference on, pp. 319–
325, IEEE, 2004.

[8] M. O. Kayed, M. Abdelsalam, and R. Guindi, “Synthesizable sva
protocol checker generation methodology based on tdml and vcd file
formats,” in High Level Design Validation and Test Workshop (HLDVT),
2016 IEEE International, pp. 1–8, IEEE, 2016.

[9] T. Zhang, D. Saab, and J. A. Abraham, “Automatic assertion generation
for simulation, formal verification and emulation,” in VLSI (ISVLSI),
2017 IEEE Computer Society Annual Symposium on, pp. 471–476,
IEEE, 2017.

[10] S. Vasudevan, D. Sheridan, S. Patel, D. Tcheng, B. Tuohy, and D. John-
son, “Goldmine: Automatic assertion generation using data mining and
static analysis,” in 2010 Design, Automation Test in Europe Conference
Exhibition (DATE 2010), pp. 626–629, March 2010.

[11] L. Li, F. P. Coyle, and M. A. Thornton, “Uml to systemverilog synthesis
for embedded system models with support for assertion generation,” in
Proceedings of the ECSI forum on design languages, 2007.

[12] M. Schweikert, T. Dornes, and H. Eveking, “Using sequence diagrams
to specify and to generate rtl assertions,” in Proceedings of the Fifth
International Conference on Verification and Evaluation of Computer
and Communication Systems (VECoS’ii), 2011.

[13] P. S. Lee and I. G. Harris, “Message sequence charts for assertion-based
verification,” CECS Technical Report, 2013.

[14] W. Silva, E. Bezerra, M. Winterholer, and D. Lettnin, “Automatic
property generation for formal verification applied to hdl-based design of
an on-board computer for space applications,” in Test Workshop (LATW),
2013 14th Latin American, pp. 1–6, IEEE, 2013.

[15] F. Rogin, T. Klotz, G. Fey, R. Drechsler, and S. Rulke, “Automatic
generation of complex properties for hardware designs,” in Design,
Automation and Test in Europe, 2008. DATE’08, pp. 545–548, IEEE,
2008.

[16] S. Hangal, N. Chandra, S. Narayanan, and S. Chakravorty, “Iodine: a
tool to automatically infer dynamic invariants for hardware designs,”
in Proceedings of the 42nd annual Design Automation Conference,
pp. 775–778, ACM, 2005.

[17] P.-H. Chang and L.-C. Wang, “Automatic assertion extraction via se-
quential data mining of simulation traces,” in Proceedings of the 2010
Asia and South Pacific Design Automation Conference, pp. 607–612,
IEEE Press, 2010.

[18] S. Hertz, D. Sheridan, and S. Vasudevan, “Mining hardware assertions
with guidance from static analysis,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 32, no. 6, pp. 952–
965, 2013.

[19] V. Athavale, “Coverage analysis for assertions and emulation based ver-
ification,” Master’s Thesis, University of Illinois at Urbana-Champaign,
2012.

[20] A. Danese, T. Ghasempouri, and G. Pravadelli, “Automatic extraction of
assertions from execution traces of behavioural models,” in Proceedings
of the 2015 Design, Automation & Test in Europe Conference &
Exhibition, pp. 67–72, EDA Consortium, 2015.

[21] S. A. Murtza, O. Hasan, and K. Saghar, “Vertgen: An automatic
verilog testbench generator for generic circuits,” in 2016 International
Conference on Emerging Technologies (ICET), pp. 1–5, Oct 2016.


