
Formalization of Asymptotic Notations in HOL4

Nadeem Iqbal∗, Osman Hasan∗, Umair Siddique∗ and Falah Awwad∗∗
∗School of Electrical Engineering and Computer Science (SEECS)

National University of Sciences and Technology (NUST), Islamabad, Pakistan
∗∗College of Engineering, UAE University, Al Ain, UAE

Abstract—Asymptotic notations characterize the limiting
behavior of a function. They are extensively used in many
branches of mathematics and computer science particularly
in analytical number theory, combinatorics and computational
complexity while analyzing algorithms. Traditionally, the math-
ematical analysis involving these notations has been done
by paper-and-pencil proof methods or simulation. In order
to introduce formal verification in this domain, this paper
provides the higher-order-logic formalizations of O, Θ, Ω, o
and ω notations and the formal verification of most of their
classical properties of interest. The formalization is based on
the theory of sets, real and natural numbers and has been done
using the HOL4 theorem prover.

I. INTRODUCTION

Traditionally, the computational time assessment of al-
gorithms is done using benchmarking and asymptotic no-
tations. In benchmarking, the main idea is to run the
algorithms on a computer and then measure their speed in
some time units. The benchmarking based assessment cannot
be trusted completely because it measures the efficiency of
a particular program which has been written in a specific
language, running on a particular platform, with a particular
compiler and a particular input data [1]. From this single
benchmark, it is difficult to predict that how much time the
algorithm will take if it is deployed on a system with a differ-
ent set of specifications. This limitation can be overcome by
using an analytical approach based on asymptotic notations
[2]. The first asymptotic notation, i.e., the Big-O notation
or simply O-notation was introduced by a number theorist
Bachmann in 1894 [3]. In the following years, its properties
and physical interpretation became more common, and it has
been frequently used in algorithms analysis. Little-o notation
was introduced by Landau in 1909 [4], and Big-Ω, Big-Θ,
and Little-ω notations were presented by Knuth in 1976 [5].

The running time complexity analysis of algorithms has
been traditionally done using paper-and-pencil proof meth-
ods or computer simulations (testing). Both of these tech-
niques do not guarantee the accuracy of the analysis results.
The paper-and-pencil proof methods are prone to human
error and there is always a risk of forgetting to pen down a
critical assumption besides the proof. For example, in 1973,
Hopcroft and Tarjan [6] proposed a linear time algorithm
to decompose a graph into its tri-connected components,
which is a very crucial algorithmic step for graph-theoretic
problems. However, their algorithmic description contains
different flaws, which were discovered by Gutwenger and

Mutzel [7] in 2001, when the highly complex algorithm
was first implemented. Simulation, on the other hand, allows
us to check that a property is true or not by analyzing its
behavior under a subset of all possible inputs.

Given the extensive usage of asymptotic analysis of
algorithms in safety-critical systems, there is a dire need
of using formal methods support in this domain. We believe
that higher-order-logic theorem proving [8] offers a promis-
ing solution for conducting formal asymptotic analysis of
algorithms. The main reason being the highly expressive
nature of higher-order logic, which can be leveraged upon
to essentially model any system that can be expressed in a
closed mathematical form. In fact, the asymptotic notations
have been formalized in higher-order logic. The O, Ω and
Θ notations have been formalized in Mizar based on non-
negative sequences of real numbers [9] and asymptotic
notions have been formalized in Isabelle/HOL [10], [11]
using ring theory. In this paper, we mainly build a library
of formalized asymptotic notations, i.e., O, Θ, Ω, o and ω,
in the higher-order-logic theorem prover HOL4 [12] using
the real number theory. The main motivation of this choice
is to be able to utilize our formalized theory of asymptotic
notations with the existing formalization of probability and
information theories [13] in HOL4 to formally reason about
probabilistic and information theoretic aspects of algorithm
complexities. This combination would allow us to target the
formal analysis of many safety-critical applications in the
areas of information security, communication engineering
and graph theoretic frameworks.

The rest of the paper is organized as follows: Section II
presents a brief introduction to the HOL4 theorem prover.
Then Section III provides our higher-order-logic definitions
of the five asymptotic notations, i.e., O, Θ, Ω, o and ω. Next
section (Section IV) provides the formal verification details
about the properties of these notations using the HOL4
theorem prover. Finally, Section V concludes the paper.

II. HOL4 THEOREM PROVER

HOL4 is an interactive theorem prover developed by
Mike Gordon at the University of Cambridge for conducting
proofs in higher-order logic. It utilizes the simple type theory
of Church [14] along with Hindley-Milner polymorphism
[15] to implement higher-order logic.

A HOL4 theory is a collection of valid HOL4 types, con-
stants, axioms and theorems, and is usually stored as a file
in computers. Users can reload a theory in the HOL4 system

and utilize the corresponding definitions and theorems right
away. The concept of HOL4 theory allows us to build upon
existing results in an efficient way without going through
the tedious process of regenerating these results using the
basic axioms and primitive inference rules.

HOL4 theories are organized in a hierarchical fashion.
Any theory may inherit types, definitions and theorems
from other available HOL4 theories. The HOL4 system
prevents loops in this hierarchy and no theory is allowed
to be an ancestor and descendant of a same theory. Various
mathematical concepts have been formalized and saved as
HOL4 theories by the HOL4 users. These theories are
available to a user when he first starts a HOL4 session. We
utilized the HOL4 theories of sets, positive integers and real
analysis in our work. In fact, one of the primary motivations
of selecting the HOL4 theorem prover for our work was to
benefit from these built-in mathematical theories.

A. Writing Proofs

HOL4 supports two types of interactive proof methods:
forward and backward. In forward proof, the user starts with
previously proved theorems and applies inference rules to
reach the desired theorem. In most cases, the forward proof
method is not the easiest solution as it requires the exact
details of a proof in advance. A backward or a goal directed
proof method is the reverse of the forward proof method. It is
based on the concept of a tactic; which is an ML function
that breaks goals into simple sub-goals. In the backward
proof method, the user starts with the desired theorem or
the main goal and specifies tactics to reduce it to simpler
intermediate sub-goals. Some of these intermediate sub-
goals can be discharged by matching axioms or assumptions
or by applying built-in decision procedures. The above steps
are repeated for the remaining intermediate goals until we
are left with no further sub-goals and this concludes the
proof for the desired theorem.

The HOL4 theorem prover includes many proof assistants
and automatic proof procedures to assist the user in directing
the proof. The user interacts with a proof editor and provides
it with the necessary tactics to prove goals while some of
the proof steps are solved automatically by the automatic
proof procedures.

III. FORMAL DEFINITIONS OF ASYMPTOTIC NOTATIONS

This section describes our formal definitions of asymptotic
notations using higher-order logic. Some examples are also
provided to facilitate understanding.

A. The O Notation

The O-notation provides an asymptotic upper bound for
algorithms or functions. Its frequency of usage outnumbers
the other notations because it gives us an upper bound on
the complexity, i.e., it gives us a guarantee that at maximum

a particular algorithm will take such a time for its execution.
It can be defined for a given function g as follows:

Definition 1: BigO Notation
` ∀ g. BigO (g:num → real) =
{(f:num → real)| (∃ c n_0.(∀ n. n_0 ≤ n
=⇒ 0 < c ∧ 0 ≤ f(n) ≤ c * g(n)))}

Here f and g are functions which take a natural number
num and return a real number real. The constants c and
n 0 are of type real and num, respectively. The BigO takes
a function g as an input and returns the set of all functions
f which qualify the condition 0 ≤ f(n) ≤ c ∗ g(n). For
example,

n2 + 20n+ 100 = O(n2)

means that there exist some positive constants c and n0 such
that n2 + 20n+ 100 ≤ cn2. It is to be noted that “=” is not
used to express “is equal to” but it refers to set membership
in the context of asymptotic notations.

B. The Θ Notation

The Θ-notation is used when we need a more strict
asymptotic bound than the one provided by O. It is defined
as follows:

Definition 2: BigTheta Notation
` ∀ g. BigTheta (g:num → real) =
{(f:num → real)|(∃ c1 c2 n_0.
(∀ n.n_0 ≤ n =⇒ 0 < c1 ∧ 0 < c2 ∧
0 ≤ c1 * g(n) ≤ f(n) ≤ c2 * g(n)))}

Here, BigTheta takes as an input a function g and returns
the set of all functions f that satisfy a more strict condition,
i.e.,0 ≤ c1 ∗ g(n) ≤ f(n) ≤ c2 ∗ g(n) for all n greater than
some n0 and for some real constants c1 and c2.

C. The Ω Notation

The Ω-notation is used when a lower asymptotic bound
is required. It is defined for a function g as follows:

Definition 3: BigOmega Notation
` ∀ g. BigOmega (g:num → real) =
{(f:num→real)| (∃ c n_0. (∀ n. n_0 ≤ n
=⇒ 0 < c ∧ 0 ≤ c * g(n) ≤ f(n)))}

BigOmega also takes as an input function g and returns
the set of all functions f which satisfy the condition
0 ≤ c ∗ g(n) ≤ f(n).

D. The o Notation

The o-notation is used to denote an upper bound that is
not asymptotically tight. It is defined for a function g as
follows:

Definition 4: LittleO Notation
` ∀ g. LittleO (g:num → real) =
{(f:num → real)| (∃ c n_0.(∀ n. n_0 ≤ n

=⇒ 0 < c ∧ 0 ≤ f(n) < c * g(n)))}

The o-notation is a variant of BigO. It takes as an input a
function and returns the set of all functions which qualify
the condition 0 ≤ f(n) < c ∗ g(n) for all values of n greater
than n 0 and for a given real constant c.

E. The ω Notation

The ω-notation is used to denote a lower bound that is
not asymptotically tight. It is defined for a function g as
follows:

Definition 5: LittleOmega Notation
` ∀ g. LittleOmega (g:num → real) =
{(f:num→real)| (∃ c n_0.(∀ n. n_0 ≤ n
=⇒ 0 < c ∧ 0 ≤ c * g(n) < f(n)))}

LittleOmega is analogous to BigOmega. It takes as an input
a function g and returns the set of all functions f which
satisfy the condition 0 ≤ c ∗ g(n) < f(n) for all values of
n greater than n 0 and for a given real constant c.

IV. FORMAL VERIFICATION OF ASYMPTOTIC
NOTATIONS

In this section, we define and prove some of the key
properties of asymptotic notations (O, Θ, Ω, o and ω), such
as transitivity, product and transpose symmetry. Due to the
fact that these properties have been formally verified ensures
the correctness of our formal definitions.

A. The O Notation

We will discuss at length the formal proof details of a
couple of key theorems of O-notation here:

Theorem 1: Transitivity of O-Notation
` ∀ f g h. f ∈ (BigO g) ∧ g ∈ (BigO h)

=⇒ f ∈ (BigO h)

Proof Sketch: We start the proof process of the above-
mentioned transitivity property of the O-Notation by rewrit-
ing the above goal with the definition of BigO notation
(Definition 1) along with some set-theoretic simplifications
and we reach the following subgoal:

(∀ n. n_0 ≤ n =⇒ 0 < c ∧ 0 ≤ f(n) ∧
f(n) ≤ c * g(n)) ∧
(∀ n. n_0’ ≤ n =⇒ 0 < c’ ∧ 0 ≤ g(n)
∧ g(n) ≤ c’ * h(n)) =⇒
(∃ c n_0.∀ n. n_0 ≤ n =⇒ 0 < c ∧
0 ≤ f(n) ∧ f(n) ≤ c * h(n))

At this stage, we have to provide specific values for the
variables c and n 0. We specialized c and n 0 with c ∗ c′
and MAX(n 0 n 0′), respectively. From the assumptions
0 < c and 0 < c′, we can readily deduce that 0 < c ∗ c′.
Furthermore, the function MAX returns maximum of the given
pair of natural numbers. To fulfill the requirements in both
the assumptions, we require such a value of n 0 that would

fulfil both these conditions and that value is MAX(n 0 n 0′).
Obviously, when the maximum of these two numbers will be
less n, the other number will be automatically less than n too.
By some straightforward arithmetic reasoning, we formally
verified the given subgoal.

Theorem 2: Sum of O-Notation
` ∀ t1 t2 g1 g2.
t1 ∈ (BigO g1) ∧ t2 ∈ (BigO g2) =⇒

(λn. t1 n + t2 n) ∈ (BigO (max(g1, g2)))

Proof Sketch: We start the proof process of the above-
mentioned sum of O-Notation property by rewriting the
above goal with the definition of BigO notation (Definition
1) along with some set-theoretic simplifications and we
reach the following subgoal:

(∀ n. n_0 ≤ n =⇒ 0 < c ∧
0 ≤ t1(n) ∧ t1(n) ≤ c * g1(n))∧
(∀ n. n_0’ ≤ n =⇒ 0 < c’ ∧
0 ≤ t2(n) ∧ t2(n) ≤ c’ * g2(n))
=⇒(∃ c n_0.∀ n. n_0 ≤ n
=⇒ 0 < c ∧ 0 ≤ (t1(n) + t2(n))∧
(t1(n) + t2(n)) ≤ c * max(g1(n), g2(n)))

Here for fulfilling the conditions of the assump-
tions n 0 ≤ n and n 0′ ≤ n, we again specialized n 0

by MAX(n 0, n 0′). Furthermore, we specialized c with
2 ∗ max(c, c′). With some straightforward arithmetic rea-
soning, we proved our goal.

Moreover, we formally verified the following theorems of
O-notation in HOL4 and the formal reasoning details can be
found in our proof script [16].

1) ` ∀ t1 t2 g1 g2.
t1 ∈ (BigO g1) ∧ t2 ∈ (BigO g2) =⇒
(λn. t1 n * t2 n) ∈ (BigO (g1 * g2))

2) ` ∀ f g. f ∈ (BigO g) =⇒
∀ k. (λn. k * f n) ∈ (BigO g)

3) ` ∀ f. (∃ n_0. (∀m. n_0 ≤ m =⇒
0 ≤ f m) =⇒ f ∈ (BigO f))

The first property in the above list is called the product
property. If an algorithm having complexity t1 is run t2

times or vice versa, then the product of their complexities
will still lie in the BigO of their product of orders of
growth. The second property refers to a situation in which
if an algorithm is run for k times, its overall complexity
in this case will still lie in the same order of growth. The
third property is a very interesting property of O-notation
and is called reflexivity. It states that the complexity of an
algorithm is always its own order of growth.

B. The Θ Notation

Theorem 3:
` ∀ f g.
f ∈ (BigTheta g) ⇐⇒ g ∈ (BigTheta f)

Theorem 3 is the symmetry property of Θ-notation. We
proceed with its verification by splitting the main goal into
the following two subgoals:

` ∀ f g.
f ∈ (BigTheta g) =⇒ g ∈ (BigTheta f)

` ∀ f g.
g ∈ (BigTheta f) =⇒ f ∈ (BigTheta g)

The proof sketch for the first subgoal is given below and
the other one was handled in a very similar way.

Proof Sketch: We start the proof process by rewriting the
goal with the definition of BigTheta notation (Definition 2)
along with some set-theoretic simplifications and we reach
the following subgoal:

(∀ n. n_0 ≤ n ⇒ 0 < c1 ∧
0 < c2 ∧ 0 ≤ c1 * g(n) ∧
c1 * g(n) ≤ f(n) ∧ f(n) ≤ c2 * g(n))
=⇒(∃ c1 c2 n_0.(∀ n. n_0 ≤ n) ⇒
0 < c1 ∧ 0 < c2 ∧ 0 ≤ c1 * f(n)
∧ c1 * f(n) ≤ g(n) ∧ g(n) ≤ c2 * f(n))

Here again, the formal reasoning process relies on choos-
ing the right set of values of variables n 0, c1 and c2. We
chose them to be n 0, 1/c2 and 1/c1, respectively, and
verified the subgoal based on arithmetic reasoning.

Moreover, we proved the transitivity, summation and
reflexivity of BigTheta as the following theorems [16]:

1) ` ∀ f g h.
f ∈ (BigTheta g) ∧ g ∈ (BigTheta h)
=⇒ f ∈ (BigTheta h)

2) ` ∀ t1 t2 g1 g2.
t1 ∈ (BigTheta g1) ∧ t2 ∈

(BigTheta g2)
=⇒ (λn. t1 n + t2 n) ∈ (BigTheta

(g1 + g2))
3) ` ∀f. (∃n_0. (∀m. n_0 ≤ m =⇒

0 ≤ f m) =⇒ f ∈ (BigTheta f))

According to the second property, i.e., the sum property of
BigTheta, if complexities of two algorithms lie in BigTheta,
then the sum of their complexities will also lie in the
corresponding sum of the orders of growth in the BigTheta.

C. The Ω Notation

Theorem 4:
` ∀ t1 t2 g1 g2.
t1 ∈ (BigOmega g1) ∧ t2 ∈ (BigOmega g2)
=⇒ (λn. t1 n + t2 n) ∈

BigOmega (min (g1, g2))

Theorem 4 implies that if an algorithm consists of two
parallel components then the algorithm’s overall efficiency

will be determined by the part with a lower order of growth.

Proof Sketch: We start the proof process by rewriting the
goal with the definition of BigOmega notation (Definition 3)
along with some set-theoretic simplifications and we reached
to the following goal:

(∀ n. n_0 ≤ n ⇒ 0 < c ∧
0 ≤ c * g1(n) ∧ c * g1(n) ≤ t1(n))∧
(∀ n. n_0’ ≤ n ⇒ 0 < c’
∧ 0 ≤ c’ * g2(n) ∧ c’ * g2(n) ≤ t2(n))
=⇒(∃ c n_0.∀ n. n_0 ≤ n ⇒
0 < c ∧ 0 ≤ c * min(g1(n), g2(n))
∧ c * min(g1(n), g2(n)) ≤ (t1(n) + t2(n))

Then we specialized the variables c and n 0 with
2 ∗ min(c, c′) and MAX(n 0, n 0′), respectively. This spe-
cialization allowed us to discharge all the conditions of the
two assumptions and thus in turn prove the above subgoal
using some arithmetic reasoning. Moreover, we proved the
following theorems of Ω-notation [16]:

1) ` ∀ f g h.
f ∈ (BigOmega g) ∧ g ∈ (BigOmega h)
=⇒ f ∈ (BigOmega h)

2) ` ∀f. (∃n_0.
(∀m. n_0 ≤ m =⇒ 0 ≤ f m)
=⇒ f ∈ (BigOmega f))

3) ` ∀ f g.
f ∈ (BigO g) =⇒ g ∈ (BigOmega f)

D. The LittleO Notation

We verified the transitivity and transpose symmetry prop-
erties of the LittleO notation as the following higher-order-
logic theorems [16].

1) ` ∀ f g h.
f ∈ (LittleO g) ∧ g ∈ (LittleO h)
=⇒ f ∈ (LittleO h)

2) ` ∀ f g.
f ∈ (LittleO g) ⇐⇒ g ∈

(LittleOmega f)

E. The LittleOmega Notation

We verified the following properties of the LittleOmega
notation as the following higher-order-logic theorems [16].

1) ` ∀ f g.
f ∈ (LittleOmega g) ∧ g ∈

(LittleOmega h)
=⇒ f ∈ (LittleOmega h)

2) ` ∀ f g.
f ∈ (LittleOmega g) ⇐⇒ g ∈

(LittleO f)

F. Asymptotic Complexity in Terms of Limits

In some situations, it is convenient to prove the complexity
using the concept of limits. For example for a function
f(n) = n2 + 20n + 100, we can say that f(n) ∈ O(n2)

by proving the following limit:limn→∞
n2+20n+100

n2 = 1.
Indeed the above limit is the sufficient condition to prove

that f(n) is on the order of n2. Similarly, for a function
f(n) = 3n + 4, we can say that f(n) ∈ o(n2) by proving
the following limit: limn→∞

3n+4
n2 = 0.

In order to facilitate the reasoning of asymptotic notations
in terms of limits, we prove the following two generic
theorems.

Theorem 5:
` ∀ f g. (∀ n. 0 < f n ∧ 0 < g n)
⇒ (lim(λ n. f n / g n) = 1)
=⇒ f ∈ Bigo g

Theorem 6:
` ∀ f g. (∀ n. 0 < f n ∧ 0 < g n)
⇒ (lim(λ n. f n / g n) = 0)
=⇒ f ∈ Littleo g

The proof script of Theorem 5 and 6 is mainly based on
the classical definition of sequential limits (given below) and
providing the suitable existential variables.

∀x x0. x −→ x0⇔

∀e. 0 < e⇒ ∃N.∀n.n ≥ N ⇒ |(x n x0)| < e

The formalization reported in this paper is available for
download at [16]. The most important part in the verification
process was to pick the right values for the existentially
quantified variables as has been described in the proof
sketches of some of the theorems.

V. CONCLUSIONS

In this paper, we presented a higher-order-logic formal-
ization of asymptotic notations. First of all, we formalized
the definitions of O, Θ, Ω, o and ω notations. Then by using
these definitions, we formally verified their properties such
as transitivity, symmetry, transpose symmetry and reflexivity
using the HOL4 theorem prover. The reported formalization
facilitates the process of formally analyzing the complexities
of algorithms using these notations in HOL4.

An interesting application domain of our formalization
is cryptography where asymptotic notations are used to
estimate the size of the key so that it will be infeasible
to break a system using given number of steps. Similarly,
asymptotic notations are frequently used in security as-
sessment of authentication protocols, such as, the security
proof of password authentication protocols and the reported
formalization can play a vital role in this kind of security-
critical analysis.

VI. ACKNOWLEDGEMENTS

This work is supported by ICT Fund UAE, fund number
21N206 at UAE University, Al Ain, United Arab Emirates.

REFERENCES

[1] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern
Approach. Pearson Education, 4th ed., 2003.

[2] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson,
Introduction to Algorithms. McGraw-Hill, 2nd ed., 2001.

[3] P. G. H. Bachmann, Analytische Zahlentheorie, Bd 2: Die
Analysische Zahlentheorie. Teubner, Leipzig, Germany, 1894.

[4] E. Landau, Handbuch Der Lehre Von Der Verteilung Der
Primzahlen. Teubner, Leipzig, Germany, 1909.

[5] D. E. Knuth, Big Omicron and Big Omega and Big Theta.
ACM SIGACT News, 8:1824, 1976 Teubner, Leipzig, Ger-
many, 1909.

[6] J. E. Hopcroft and R. E. Tarjan, “Dividing a Graph into
Triconnected Components,” SIAM Journal of Computing,
vol. 2, no. 3, pp. 135–158, 1973.

[7] C. Gutwenger and P. Mutzel, “A Linear Time Implementation
of SPQR-Trees,” in Graph Drawing, vol. 1984 of Lecture
Notes in Computer Science, pp. 77–90, Springer, 2001.

[8] J. Harrison, Handbook of Practical Logic and Automated
Reasoning. Cambridge University Press, 2009.

[9] R. Krueger, P. Rudnicki, and P. Shelley, “Asymptotic notation.
part i: Theory 1,” Journal of Formalized Mathematics, vol. 11,
pp. 1–7, 2003.

[10] J. Avigad and K. Donnelly, “Formalizing O Notation in
Isabelle/HOL,” in Automated Reasoning, vol. 3097 of Lecture
Notes in Computer Science, pp. 357–371, Springer, 2004.

[11] M. Eberl, “Proving Divide and Conquer Complexities in
Isabelle/HOL,” Journal of Automated Reasoning, vol. 58,
no. 4, pp. 483–508, 2017.

[12] K. Slind and M. Norrish, “A brief overview of hol4,” in
Theorem Proving in Higher Order Logics, vol. 5170 of
Lecture Notes in Computer Science, pp. 28–32, Springer
Berlin / Heidelberg, 2008.

[13] T. Mhamdi, O. Hasan, and S. Tahar, “Formalization of
Entropy Measures in HOL,” in Interactive Theorem Proving
(ITP), vol. 6898 of Lecture Notes in Computer Science, 2011.

[14] A. Church, “A Formulation of the Simple Theory of Types,”
Journal of Symbolic Logic, vol. 5, pp. 56–68, 1940.

[15] R. Milner, “A Theory of Type Polymorphism in Program-
ming,” Journal of Computer and System Sciences, vol. 17,
pp. 348–375, 1977.

[16] http://save.seecs.nust.edu.pk/projects/an, 2018.

