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Abstract
Time-domain based periodic steady-state analysis is an indispensable com-

ponent to analyze switching functionality and design specifications of power
electronics converters. Traditionally, paper-and-pencil proof methods and com-
puter-based tools are used to conduct the time-domain based steady-state anal-
ysis of these converters. However, these techniques do not provide an accurate
analysis due to their inability to model and analyze continuous behaviors ex-
hibited by the power electronics converters. On the other hand, an accurate
analysis is direly needed in many safety and cost-critical power electronics appli-
cations, such as biomedical, hybrid electric vehicles, and aerospace engineering.
To alleviate the issues pertaining to the above-mentioned techniques, we pro-
pose a methodology, based on higher-order-logic theorem proving, to conduct
the time-domain based steady-state analysis of power electronics converters
in this paper. The proposed methodology is primarily based on a formalized
switching function analysis technique, ordinary linear differential equations and
steady-state conditions of the systems. To illustrate the usefulness of proposed
formalization, we present the formal time-domain steady-state analysis of a
commonly used DC-DC Buck converter.
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1 Introduction

Power electronics converters are an integral part of, almost, every realizable electri-
cal/electronics system, as a power processing stage, to meet their power requirements
[10]. These systems are typically composed of semiconductor devices, like switches,
energy storage and dissipative elements, i.e., inductors, capacitors, and resistors, and
integrated circuits for control. Generally, periodic steady-state analysis is a manda-
tory preprocessing step for the small-signal analysis, which is used to evaluate the
performance of the converter. Moreover, time-domain based analysis is necessary for
the study of the switching functionality, which is central to the power conversion op-
eration of the converters [10]. However, switching is a highly non-linear phenomenon
and therefore leads to significant modeling, analysis and design challenges of these
systems.

Traditionally, paper-and-pencil proof methods or computer-based numerical tec-
hniques are used to perform the time-domain based steady-state analysis of the
power electronics systems. The paper-and-pencil proofs are usually based on many
assumptions, such as small-ripple approximations, and averaging techniques to lin-
earize the nonlinear behavior of the systems to analyze the systems in steady-state
[10]. These linearized models, expressed as ordinary linear differential equations, are
then simulated using a variety of computer based simulation tools, such as MATLAB
Simulink, Saber, PSpice, to evaluate the performance of the power electronics sys-
tems. Generally, these computer based simulation tools use discretized time or fre-
quency domain models of the systems and numerical integration methods [7] for solv-
ing the differential equations of the converters [8]. Therefore, the above-mentioned
techniques cannot ascertain an accurate and reliable analysis of the power convert-
ers due to inherent approximation based nature of these techniques. For example,
the accuracy of paper-and-pencil proof methods is usually limited by the underly-
ing approximate linearized model. On the other hand, the nonlinear analysis is,
mathematically, not tractable and due to human involvement is highly likely error
prone. Similarly, the numerical methods employed in the simulation techniques,
based upon the discretization of time or frequency, lead to truncation errors and
also cannot accurately model the hybrid behavior, i.e., continuous behavior driven
by discrete events, exhibited by power converters [22]. To address this issue, com-
puter algebra systems, which are software programs for the symbolic processing of
mathematical expressions, are also employed for the analysis of such systems [16].
However, the symbolic processing is based on the unverified program codes, and
therefore prone to bugs [21]. Thus, given the aforementioned inaccuracies, these
traditional techniques should not be relied upon for the analysis of power electronics
systems, especially when they are used in safety-critical areas, such as implantable
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medical devices [3] and automotive industry [9], and mission-critical areas, such as
aerospace engineering [13], where bugs may lead to heavy monetary or human life
loss.

In recent years, formal methods have been extensively employed for the accurate
analysis of a variety of hardware and software systems. The transfer function of DC-
DC converters has been verified [6] in the frequency domain using higher-order-logic
theorem proving based on the signal flow graph and Mason’s gain formula. The
transfer function is then used to reason about the efficiency, stability and resonance
of pulse width modulation push-pull DC-DC converter and 1-boost cell DC-DC
converter. However, the nature of formalization does not permit to reason about the
interesting features of switch, which is a key element of power electronic converters.
Model checking has also been used for the analysis of the DC-DC Buck circuit [18]
[20] using a hybrid automaton equivalent model of circuit to verify the reachability
and safety properties of the circuit. However, the state-based modeling of the circuit
does not allow to describe the exact continuous behavior of power converters circuits.
Moreover, the state-space explosion issues also limit the scope of model checking for
the verification of continuous and hybrid systems. To the best of our knowledge,
there is no formal approach in the literature that explicitly allows us to verify the
nonlinear aspects pertaining to the modeling and time-domain based steady-state
analysis of power electronics systems.

The main motivation of this paper is to develop a formal logical framework for the
time-domain based steady-state analysis of power converters. The main challenge
in this direction is to be able to model and analyze the continuous structural or
topological changes under the switching action [5], which are usually modeled using
the Heaviside step function [1], i.e.,

u(t) =





1 0 < t

1/2 t = 0
0 t < 0

(1)

The topological changes deter the explicit use of conventional circuit analysis
techniques, such as mesh and node analysis, for investigating the implementation of
the circuit by using the behavior of its individual components and its overall behavior
[17]. Another notable consequence is that the switching action introduces piecewise
functions, which are also expressed in terms of the Heaviside step function, in the
analysis that in turn cannot be analyzed using linear mathematical techniques based
on the Riemann integral theory, such as differential chain rule and integration by
part. To tackle the former issue, we propose to use the switching function technique
[17], which is a commonly used circuit analysis technique that allows to incorporate
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the topological changes of the circuit in the analysis. We tackled the piecewise
nature of the functions in our formal framework by using the Gauge or Henstock-
Kurzweil integral [15]. The Gauge integral is characterized by the Gauge function
for the tagged division of an interval over which the function is to be integrated.
This simple, but novel, alteration allows us to integrate the functions with countable
singularities or the functions that are continuous but not differentiable everywhere
on the given interval. It, particularly, supported us in the formal verification of
an interesting notion of the Heaviside step function as a generalized function [14]
which is widely used to describe discontinuous phenomena in physics and engineering
disciplines. As a generalized function, the Heaviside step function acts as an operator
on a test function f(x), which needs to be smooth everywhere, as:

∫ b

a

h(x− c)f(x) =
∫ b

c

f(x) ∀ a b c. a < c < b (2)

The smoothness of test function also plays a pivotal role in the differentiation
of the piecewise functions involving the Heaviside step function in the formal time-
domain based periodic steady-state analysis of power converters.

Besides these foundations, the proposed formalization is based on the formal-
izations of linear ordinary differential equations and steady-state conditions. The
homogeneous linear differential equations using real analysis have been formalized
in HOL to model the cyber-physical systems [19]. In this paper, we have extended
the logical framework, presented in [19], to the non-homogeneous linear differen-
tial equations using complex analysis to formally model the dynamic behavior of
the power converters. We have used the multi-variable integral, differential, tran-
scendental and topological theories to define the steady-state conditions due to the
piecewise nature of the functions involved in the analysis.

The formalization in this paper is done using the HOL-Light theorem prover
[11], which supports formal reasoning about higher-order logic. The main motiva-
tion behind this choice is the availability of reasoning support about multi-variable
integral, differential, transcendental and topological theories [12], which are the fore-
most foundations required for the formalization of time-domain based steady-state
analysis of power electronics systems.

The rest of the paper is organized as follows: We describe some preliminaries
regarding the periodic steady-state analysis of power electronics converters in Sec-
tion 2. In Section 3, we present the proposed methodology. The formalization of the
switching function technique, ordinary differential equations and steady-state condi-
tions in Section 4. We utilize this formalization to formally verify a Power converter
circuit, i.e., DC-DC buck converter in Section 5. Finally, Section 6 concludes the
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paper.

2 Periodic Steady-state Analysis of Power Converters
Power converter circuits use continuous switching among different circuit configura-
tions to achieve the desired power conversion, such as dc-dc, dc-ac, ac-dc and ac-ac.
In each circuit configuration, also called mode or state of the converter, the behavior
of the circuit variables can be expressed as differential equations with initial con-
ditions from the previous mode at the switching instance. Therefore, the standard
approach for the time-domain analysis of these converters consists of developing the
differential equations for each mode of the circuit based on the Kirchoff’s voltage or
current laws to describe the dynamic behavior of these circuits.

Mathematically, the behavior of these systems can be described as:

H(t, y1, y
1
1 , ..., y

mn
n ) = p(t) t ∈ [tn−1, tn] , n,mn ∈ N

yk
n(tn) = yk

n−1(tn−1) k ∈ N
y1

0(t0) = 0
(3)

Where, H and p are functions of an independent variable t, a dependent variable
yn and its mn-th order derivative in the corresponding n-th mode, respectively. In
power converters, the time is considered as an independent variable, whereas, the
voltage or current of the energy storage components is considered as a dependent
variable. The order, i.e., mn, of an ordinary differential equation of the power con-
verter, in the n-th mode, is determined by the number of energy storage elements
constituting the mode. The function p(t) is referred to as a non-homogeneous term,
which can be zero or non-zero in the n-th mode, depending upon the presence of
source in the n-th mode of a power converter. Initially, the value of dependent
variable is considered zero, i.e., y1

0(t0) = 0, however, later on the value of the
dependent variable in one mode becomes an initial value for the next mode, i.e.,
yk

n(tn) = yk
n−1(tn−1), when switching instance occurs. Whereas, k is the order of the

derivative of the dependent variable evaluated at a specific time instance.
For the brevity of the notion, transient and steady-state time-domain behavior

of a DC-DC power converter is presented in Fig. 1, base on the above-mentioned
standard approach. DC-DC power converter circuits are designed to step-up or
step down the dc voltage levels applied at their input. Fig. 1 shows the output
behavior, yt, of a DC-DC power converter under the switching action represented
by a rectangular switch wave form, Sw.

In periodic steady-state, the dependent variables of a power converter circuit
attain an equilibrium and repeat the behavior over a time period, Tp, constituting
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Figure 1: Dynamic behavior of the output, y(t), of a DC-DC power con-
verter under switching action, represented by the switching wave form,
Sw.

l modes. Mathematically, the periodic steady-state behavior of a power converter
over one time period, when t→∞, can be represented as:

H(t, yn, y
1
n, ..., y

mn
n ) = p(t) t ∈ T, T ∈

l⋃

i=1

[
t

′
i−1, t

′
i

]
,mn, n, l ∈ N

yk(t
′
0) = yk(t

′
0 + Tp) Tp = t

′
max(i) − t

′
0, k ∈ N

(4)

Equation (4) reduces the problem to the identification of the modes in one time
period, Tp = t

′
max(i) − t

′
0, of the circuit, which is the length of time over which the

modes of a power circuit converter repeat themselves. The function y is a piecewise
function defined over l modes. Whereas, yk(t′0) = yk(t′0 + Tp) refers to the steady-
state conditions of the system variable at reference switching time instances, t′0, and
Tp, and k represents the k-th order derivative of the variable.

Fig. 2 illustrates the behavior of the output of a DC-DC power converter in
steady-state, which is mathematically modeled in Equation 4. The output, y(t),
of the converter exhibits a repetitive behavior over the time period Tp in l modes.
In literature, waveforms of the dependent variable, y, are used for the periodic
steady-sate analysis of the power converters by applying the principle of inductor
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Figure 2: Behavior of the output, y(t), of a DC-DC power converter in
Periodic steady-state.

volt-second or capacitor-charge, along, with small-ripple approximations to reduce
the complexity of the analysis by compromising the accuracy [10].

In this paper, we propose a logical framework for the formal verification of the
periodic steady-state analysis of power converters in time domain, which are mathe-
matically represented by Equation 4. The challenges to develop a logical framework
for the formal verification of the aforementioned problem are two fold. Firstly, we
intend to develop a higher-order logic formalization capable of incorporating the
topological structural changes over the time period, i.e., T ∈ ⋃l

i=1
[
t
′
i−1, t

′
i

]
, thus,

enabling us to formally model and reason about the implementation behavior of
these circuits within the sound core of the HOL-Light theorem prover. Second we
want to develop a formal library of foundations, including; differential equations,
concepts from operational calculus described by Equation 2, to formally reason and
verify the highly nonlinear behavior of the circuit variables involved in the formal
periodic steady-state analysis of these circuits, in higher-order logic. The respective
subsections of Section 4 address these challenges by presenting the formalization of
switching function technique, differential equations and solution of these differential
equations, respectively, to conduct the formal periodic steady-state analysis of power
converters in the time-domain.

In the next section, we present the proposed methodology for the formal periodic
steady-state analysis of the power converters, in a higher-order-logic theorem prover,
i.e., HOL-Light.
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3 Proposed Methodology

We propose to use higher-order-logic theorem proving, as shown in Fig. 3, in order
to formally verify the power converters operating in the periodic steady-state. The
first step in the proposed methodology is to build a formal model for the switching
function technique and linear order differential equations to formally express the
implementation and specification of power converter circuits, in higher-order logic.
The proposed formal modeling of switching function technique is based on the for-
mal definitions of an ideal semiconductor switch, energy storage and dissipative
elements, and Kirchoff’s current and voltage laws. Whereas, the formal modeling
of the linear ordinary differential equation is used for the formal specification of
the behavior of each mode of the power converter circuit. The aforementioned two
formal models can then be used to formally assert and analyze the implementation
of the circuits, as a theorem, using the sound core of HOL-Light. Moreover, the
formal specification of ordinary linear differential equations is also used to formally

Higher-oredr Logic

Multivarite Theory

Storage and
dissipative
components

Kirchoff’s
current and
voltage laws

Semiconductor switch

Steady-state conditions

Library

Switching Function
Technique

Ordinary Linear Differential
Equations (ODEs)
ODEs Solution

Power Electrnics
Circuits

Circuit
Implementation

Circuit
Specification

Steady-state
Conditions

Formal
Implementation

Formal
Model

Formal
Model

Properties

Formal
Specification

Theorems Theorem

HOL-Light

Verification

Foundational Formalization Power Converters Verification

Figure 3: Proposed Methodology
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verify the correctness of the solutions of these equations. As the steady-state anal-
ysis is based upon the formal modeling of the linear ordinary differential equations
and their solutions, therefore, in the next step, we propose to formally define the
steady-state conditions to conduct the formal analysis of power converters, as shown
in Fig 3. These formal definitions, along with multi-variable theories of HOL-Light,
are used to formally verify the theorems that are required to conduct the formal
steady-state analysis of power converters. Finally, the switch is formalized using the
Heaviside step function, and its related properties, such as integration and derivation
of piecewise functions involving Heaviside step function, are formally verified. As
the switching functionality plays the most vital role in characterizing the nonlinear
behavior of the power converters therefore these formally verified properties are used
in, almost, every aspect of the formalization and verification.

4 Foundational Formalizations
4.1 Formal Model of the Switching Function Technique
In power converter circuits, semiconductor devices such as, diodes, BJTs (bipolar
junction transistors), MOSFETs (metal oxide semiconductor field effect transistors),
IGBTs (insulated gate bipolar transistors) etc, are used for performing the switching
operation. These semiconductor devices play a vital role in the development of
reliable, cost-effective and highly efficient converters [4]. Although, these devices
differ in their physics and physical properties, however, as a switch, their function is
to connect or disconnect a path or subcircuit, in a converter circuit, to achieve the
desired conversion. Therefore, the functionality of an ideal semiconductor device as
a switch can be modeled using the Heaviside function, i.e., Equation (1), in HOL-
Light:

Definition 1: ` ∀ t. semi_switch t = if t < &0 then &0 else
(if t = &0 then &1 / &2 else &1)

Definition 1 models the functionality of a semiconductor switch as a real value 1,
for connected status, and 0, for disconnected status, in higher-order logic. Whereas,
at the switching instance t, it has value 1/2. The & is a typecasting operator in
HOL-Light that maps a number to a real number. In our formalization, we use
switch status or switching function to refer connected or disconnected switch.

The switching operation is central to the power converters functionality, however,
it hinders the straightforward usage of the conventional circuit theory techniques,
such as Kirchoff’s voltage and current laws. The switching function technique relies
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A

B
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V1(t) F1(t)

V2(t) F2(t)
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(a) Voltage at switching junction

I1(t) I2(t) In(t)

A
′

I(t)

F1(t) F2(t) Fn(t)

(b) Current at switching junction

Figure 4: Switching function technique

on the superposition theorem of the voltage or current to express the behavior
of these quantities in the presence of a switch in the circuit. It is based on the
conceptualization of the switch as a modulating function for the input and output
power. Based on this notion, the voltages and the currents in the presence of a
switch component can be expressed as [1];

VAB(t) =
n∑

i=1
Vi(t)Fi(t) n ∈ N (5a)

Ii(t) = I(t)
n∑

i=1
Fi(t) n ∈ N (5b)

Equation 5(a), describes voltage at the switch junction, in a mesh, in terms of
switching functions. Fig. 4(a) is a pictorial representation of the concept, where n
voltage sources are connected to a point, A, through n switches. The voltage, VAB,
is then the superposition of the input voltages, however, the contribution of each
voltage is dependent upon the associated switching function. Similarly, Equation
5(b), describes the current at a node, A′ , which has n switches. Fig. 4(b) describes
the situation where current, I(t), is supplied to n paths of the circuit through n
switches. Each path receives the fraction of total current depending upon its switch
status, Fn(t).

Voltages and currents at the switching junction in higher-order logic are defined,
as:

Definition 2: ` ∀ mod_lst volt_lst t.
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switch_volt mod_lst volt_lst t =
vsum (0..LENGTH mod_lst - 1) (λ n. EL n volt_lst t * Cx (EL n mod_lst))

The function switch_volt describes the voltage at the switch junction using Equation
5(a). It accepts a list, volt_lst, which contains all the possible voltage drops at
the switching junction, a list of modes, mod_lst, which contains the switch status
or switching function for each mode, and t is the time, which indicates that this
function is time dependent. Whereas, Cx is a HOL-Light function, which is used to
map a real number, representing the switching function, to a complex number.

Definition 3: ` ∀ mod_lst curr t. switch_current mod_lst curr t =
curr t * vsum (0..LENGTH mod_lst - 1) (λ n. Cx (EL n mod_lst))

Definition 3 formally models the current at the switching junction using Equation
5(b). It accepts an argument curr, which represents the total supplied current to
the switch junction, a list of modes, mod_lst, which contains the switch status or
switching function for each mode, and t, which represents time.

To accomplish the formal modeling of the switching function technique, we also
formalize the Kirchoff’s voltage and current laws:

Definition 4: ` ∀ vol_lst t. kvl vol_lst t =
vsum (0..LENGTH vol_lst - 1) (λn. EL n vol_lst t) = Cx (&0)

Definition 5: ` ∀ cur_lst t. kcl cur_lst t =
vsum (0..LENGTH cur_lst - 1) (λn. EL n cur_lst t) = Cx (&0)

The kvl and kcl functions accept lists of type (R → C), to express the behavior of
the time dependent voltages and currents in the given power converter circuit and
a time variable t. They return the predicates that guarantee that the sum of the
voltages in a loop or sum of the currents at a node are zero for all the time instants.

The voltages and currents in Definitions 2 and 3 are piecewise functions due to
switching action. We formally verified the result of Equation (2) to conduct the
formal analysis involving such functions:

Theorem 1: ` ∀ f a b c x.
A1:(∀t. (λx. f (x)) differentiable_on s) ∧
A2:∼(real_interval [a,b] = {}) ∧
A3:c ∈ [a, b]
⇒
∫ b

a (λx. semi_switch x c ) * f (x)) =
∫ b

c (λx. f (x))

The Assumption A1 ensures the differentiability of a test function, f, over s. Where-
as, s:(R→ B) is a set-theoretic definition of the intervals in higher-order logic, over
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real numbers. For a given real interval [a,b], it represents all possible real intervals,
which are subsets of the given real interval. Therefore, Assumption A1 ensures the
differentiability of a test function over all subsets of the given real interval [a,b].
Assumptions A2 and A3 ensure that the interval is non-empty and point c lies within
the interval [a, b]. The conclusion of the Theorem 1 formally verifies the affect
of applying the Heaviside step function on a test function, i.e., changes the limit of
integral. Theorem 1 is formally verified using the formal definition of Gauge integral
and its properties, available in HOL-Light theorem prover. This formally verified
result plays a very key role in the formal reasoning of the systems which exhibit
nonlinear behavior, such as power converters circuits.

The above formalization enables us to formally model and analyze the nonlinear
behavior exhibited by the power converters, due to switching action, in higher-order
logic.

4.2 Ordinary Linear Differential Equation
An nth-order ordinary linear differential equation can be represented as:

an(t)d
ny(t)
dx

+ an−1(t)d
n−1y(t)
dx

+ ...+ a0(t)y(t) = p(t) (6)

We formalized the nth-order derivative function in higher-order logic as follows:
Definition 6: ` ∀ n f t. (n_vec_deri 0 f t = f t ) ∧

(∀ n. n_vec_deri (SUC n) f t =
n_vec_deri n (λ t. vector_derivative f at t) t)

The function n_vec_deri accepts a positive integer n that represents the order of the
derivative, the function f:(R→ C) that represents the complex-valued function that
needs to be differentiated, and the variable t:(R) that is the variable with respect
to which we want to differentiate the function f. It returns the nth-order derivative
of f with respect to t. Now, based on this definition, we can formalize the left-hand
side (LHS) and right-hand side (RHS) of Equation (6) in HOL-Light as the following
definitions:
Definition 7: ` ∀ P y t. diff_eq_lhs A f t =

vsum (0..LENGTH A) (λ n. Cx ( EL n A t) * n_vec_deri n f t)

Definition 8: ` ∀ L y t. diff_eq_rhs L p t =
vsum (0..LENGTH L) (λ n. Cx (EL n L) * EL n p t)

In the above definitions, A and L are the coefficient’s lists, f:(R→ C) and p(t):(R→
C) are complex-valued functions, and t:(R) is the time variable to formally model
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the linear ordinary differential equation. Definition 6 is also used to formally define
the steady-state condition of the power converters as:

Definition 9: ` ∀ n. ( steady_state 0 f Tp =
( n_vec_deri 0 f (&0) = n_vec_deri 0 f Tp ) ) ∧
( steady_state (SUC n) f Tp =
( n_vec_deri (SUC n) f (&0) = n_vec_deri (SUC n) f Tp ) )

The above generic formalization allows to formally model the dynamic behavior
of systems represented by differential equations. We have utilized this formalization
to formally specify and reason the periodic steady-state behavior of power converters,
described in Equation 4.

4.3 Solution of Linear Differential Equations
The general solution to non-homogeneous Equation (6) is expressed as

y(t) = yh(t) + yp(t) =
n∑

i=1
ciyi(t) + yp(t) (7)

Where, yh(t) is the linear combination of the fundamental solutions of Equation (6)
when p(t) = 0, and yp is the particular solution corresponding to Equation (6) when
p(t) 6= 0.

The formal verification of the correctness of the solution of linear differential
equation, i.e., Equation (6), is based on the linearity property of the derivatives,
which we have formally verified for the complex-valued functions as:

Theorem 2: ` ∀ n f h t.
A1: (λ m t. m ≤ n ⇒ (λ t. n_vec_deri m f t) differentiable at t) ∧
A2: (λ m t. m ≤ n ⇒ (λ. n_vec_deri m h t) differentiable at t)

⇒ n_vec_deri n (λt. Cx a * f t + Cx b * h t) t =
Cx a * n_vec_deri (λt. f t) t + Cx b * n_vec_deri (λt. g t) t

We formally verified the solution of a linear differential equation, represented by
Equation (7), in the HOL-Light theorem prover as follows:

Theorem 3: ` ∀ Yh C Yp A L p t.
A1: (n_differentiable_fn Yh (LENGTH A)) ∧
A2: (n_differentiable_fn Yp (LENGTH L)) ∧
A3: (n_homo_soln A Yh t) ∧
A4: (n_nonhomo_soln A L Yh Yp t)
⇒ diff_eq_lhs A (λ t. linear_sol C Yh t + Yp t = diff_equ_rhs L p t
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In Theorem 3, Assumptions A1 and A2 ensure the nth-order differentiability of the
fundamental solutions, given as a list Yh, and particular solution, provided as a
list Yp, respectively. The predicate in the Assumption A3, i.e., n_order_homo_-
eq_soln_list, ensures that each element of the list Yh is a solution of the given
differential equation, when p(t) = 0 in Equation (6), where L is the list of coefficients.
Similarly, the predicate in Assumption A4, i.e., n_order_nonhomo_eq_soln_list,
ensures that the particular solution, Yp, satisfies the differential Equation (6). The
function linear_sol, used in the conclusion of Theorem 2, models the linear so-
lution combination of fundamental solutions, i.e., ∑n

i=1 ciyi(t), using the lists of
solution functions Yh and arbitrary constants C. The formal verification of Theo-
rem 3 is based on Theorem 1 and the formally verified lemma about solution of
homogeneous differential equation, i.e., when p(t) = 0 in Equation (6). More details
about the modeling and verification steps can be found in our proof script [2]. The
formalization, presented in this section, is generic and provides sufficient support
to formally model and reason about different aspects of a power converters’ circuits
including; implementation and behavior, specification, correctness of the solution of
differential equations representing the behavior of circuits, and also the steady-state
behavior of quantities of interests, such as voltages and currents. The corresponding
proof script, which is available for download at [2], has 3000 lines of HOL-Light code
and requires about 350 man hours of development time.

5 DC-DC Buck Converter

The DC-DC buck converter is a commonly used power converter that steps down
a given input to a desired output level. In a DC-DC Buck converter, operating in
a continuous conduction mode, a switch controls the flow of energy from the raw
source, V s, to the output by periodically switching between Positions 1 and 2, as
shown in Fig 5. The energy is stored in the inductor when the switch is at Position
1, and is dissipated to the output circuitry, when the switch is at Position 2.

The circuit has two modes, i.e., n = 2, defined by the switching instances, t0, ton,
and toff . In periodic steady-state the circuit will repeat its behavior periodically
over the time period Tp. Moreover, due to periodic steady-state the dependence on
t0 can be dropped and therefore have assigned t0 = 0 in our analysis. Applying
Kirchoff’s current and voltage laws in switch Positions 1 and 2, gives the following
differential equations for the respective modes:
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iL = iC + iR

d2

dt2
V 1

out(t) + 1
RC

d

dt
V 1

out(t) + 1
LC

V 1
out(t) = Vs

LC

V 1
out(t) = c1e

s1t + c2e
s2t + Vs

(8)

iL = −ic − iR
d2

dt2
V 2

out(t) + 1
RC

d

dt
V 2

out(t) + 1
LC

V 2
out(t) = 0

V 2
out(t) = c3e

s3t + c4e
s4t

(9)

Where, Vout is the output voltage of the converter, as shown in the Fig. 5, and
s1, s2, s3 and s4 are the roots of the characteristic equation of the converter in two
modes. Moreover, s1 = s3 and s2 = s4 due to the identical characteristic equations.
The solution of Equations (8-9), over the time period Tc, can be written using the
Heaviside step function as

Vout(t) = u(t− ton)V 1
out(t) + (1− u(t− ton))V 2

out(t) (10)

In the periodic steady-state, the voltage of the DC-DC buck converter satisfies the
following conditions

Vout(0) = Vout(T ) , d

dt
Vout(0) = d

dt
Vout(T ) (11)

The steady-state conditions provide two algebraic equations, however, there are four
constants involved in the solution. Two more algebraic equations can be obtained
from the continuity of the voltage, i.e., Vout, due to continuous conduction mode of

+
−Vs

•1

•2

L

RC

iL iC

iR

Vout

Vout

t0 ton toff

Tp

Figure 5: DC-DC buck Converter

1301



Ahmed, O. Hasan and A. Hasan

Component Current Relationship
Resistor IR(t) = V(t)

R
Capacitor IC(t) = CdV(t)

d(t)
Inductor IL = i0 + 1

R
∫ t

0 V(t)

Table 1: Basic quantities in DC-DC converter

the circuit, i.e.,

V 1
out(ton) = V 2

out(ton) , d

dt
V 1

out(ton) = d

dt
V 2

out(ton) (12)

Equations (11-12) are used to specify the periodic steady-state voltage that allows
finding the minimum and peak conduction currents in steady-state. These currents
can then be used to determine ripple currents, which are essentially crucial in spec-
ifying the components in the design of the converters.

The first step, in the formalization of the DC-DC Buck converter consists of
using the switching function technique to write the switch junction voltages, which
in turn requires to formally define the currents of inductor, capacitor and resistor
elements. The mathematical expressions for these elements are presented in Table
1, which are formally defined as,

Definition 10: ` ∀ io L v. ind_curr v L io =
(λ t. io + Cx (&1 / L) * integral (interval [&0, t]) v)

Definition 11: ` ∀ C v. cap_curr C v =
(λ t. Cx C * vector_derivative v (at t))

Definition 12: ` ∀ v R. res_curr R v = (λ t. v t * Cx (&1 / R))

Where, R , C and L represent the resistance, capacitance and inductances of the
resistor, capacitor and inductor of the circuit. io is the initial value of the induc-
tor current, whereas, v represents the voltage drop across the circuit elements, at
any time t. Now, using Definitions 2, 4, 5, 10, 11, and 12, we can formalize the
implementation of DC-DC Buck converter as:

Definition 13: ` ∀ io L C R Vs Vout VL ton t.
buck_ckt_impl io L C R Vs Vout VL ton t =
(Vl = switch_volt [λt. Cx Vs - Vout t; (λt. –Vout t)]

[&1 - semi_switch (t - t_on); semi_switch (t - ton] t)
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∧ (∀t. ∼(t = ton) ⇒
kcl [ind_curr (λt. VL t) L io; cap_curr C (λt. –Vout t);

res_curr R (λt. –Vout t)] t )

In the above definition, Vs is the supply voltage, Vout is the voltage drop at the
junction of all these components, with respect to the ground, and VL is the voltage
drop across the inductor. However, due to the the presence of the switching junction,
we model the inductor voltage, in the first conjunct, using the switch_volt function,
which is provided with two lists; one for all the possible voltage drops, and the other
with all the corresponding switching functions for every mode, and an independent
variable t. Where, ton, is the exact switching instant. This voltage is then used to
apply the conventional Kirchoff’s current law, using the function kcl, which accepts
a list of currents, and an independent variable, i.e., t.

This implementation model results in the ordinary linear differential equations
of the system, which can be described using Definitions 7 and 8 as:

Definition 14: ` ∀ io Vs Vout L C R ton t.
buck_diff_equ io Vs Vout L C R ton t =
if (t < ton) then diff_eq_lhs [

1
LC

;
1
RC

; 1] (Vout(t)) t =

diff_eq_rhs [
Vs

LC
] [1] t

else diff_eq_lhs [
1
LC

;
1
RC

; 1] (Vout(t)) t = diff_eq_rhs [0] [0] t

According to the proposed methodology, as a first step, we formally verify the im-
plementation and behavior of the Buck converter using the formal model of switching
function technique and linear order differential equations as:

Theorem 4: ` ∀ i0 Vs VL Vout L C R ton Tp t .

A1: (∀ t. VL continuous_on [0, t] ∧
A2: ∼ (C = 0) ∧
A3: (t ∈ (0, Tp)) ∧
A4: ∼(t = ton) ∧ A5: (ton ∈ (0, Tp)) ∧
A6: (∀ t. differentiable_n_vec_deri 1 Vout t) ∧
A7: buck_ckt_impl i0 L C R Vs Vout VL ton t

⇒ buck_diff_equ i0 Vs Vout L C R ton t

Assumption A1 ensures that the converter is operating in the continuous conduc-
tion mode. Assumption A2 prevents a division by zero case in the formal analysis.
Assumptions A3-A4 ensure that the time is over one time period of the system and
does not include the singularities, at t0 = 0, t = ton and t = Tp, due to switch-
ing action. Whereas, Assumptions A5 specifies that the switching time, t = ton, lies
within the open interval defined by the single time period of the circuit. Assumption
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A6 formally specifies the differentiability of the function, Vout, and its first derivative.
The predicate differentiable_n_vec_deri accepts a number, n, and function, f,
and specifies the differentiability of the function upto its nth-derivative. Finally,
Assumption A7 specifies the formal implementation of the power converter circuit
using Definition 13. The formal proof of Theorem 4 involves taking derivative of
Assumption A7, which consists of piecewise functions, by employing Theorem 1.

Following the proposed methodology, the next task is to formally verify the
correctness of the solution of the ordinary linear differential equations of the Buck
converter in HOL-Light. Therefore, we define the piecewise solution, i.e., Equation
(10), of the Buck converter in higher-order logic as:

Definition 15: ` ∀ Vs c1 c2 c3 c4 s1 s2 ton t.
solution Vs c1 c2 c3 c4 s1 s2 ton t =
linear_sol [c1; c2] (cexp_list [s1; s2]) t *

Cx (semi_switch (t - ton)) +
linear_sol [c3; c4] (cexp_list [s1; s2]) t *

Cx (&1 - semi_switch (t - ton)

Where Vs is the supply voltage, c1, c2, c3 and c4 are arbitrary constants, s1 and
s2 are the roots of homogeneous differential equations corresponding to Equations
(7) and (8), respectively. Whereas, the cexp_list function is a higher-order-logic
function to express the exponential form of the solution for real and distinct roots,
i.e., s1 and s2, of the circuit. It is defined as:

Definition 16: ` ∀ x. (cexp_list [] = []) ∧
cexp_list (CONS s t) = CONS (λx. cexp (s * Cx (x))) (cexp_list t)

Next, using Definition 15, we formally verify the correctness of the solution of
the differential equations, in each mode of the converter, in HOL-Light as:

Theorem 5: ` ∀ i0 Vs Vout L C R c1 c2 c3 c4 s1 s2 ton Tp t .

A1: (∀ t. ∼(t = ton) ⇒ Vout = solution Vs c1 c2 c3 c4 s1 s2 ton t) ∧
A2: (s1 = − 1

2RC + 1
2

√
1

(RC)2 − 4
LC ) ∧

A3: (s2 = − 1
2RC − 1

2

√
1

(RC)2 − 4
LC ) ∧

A4: (4 R2 C ≤ L) ∧
A5: (0 < L) ∧
A6: (0 < R) ∧
A7: (0 < C) ∧
A8: (t ∈ (0, Tp)) ∧
A9: ∼(t = ton) ∧
A10: (ton ∈ (0, Tp))

⇒ buck_diff_equ i0 Vs Vout L C R ton t
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Assumption A1 formally defines the output voltage Vout as a piecewise function, over
the time period, Tp, of the converter circuit. Assumptions A2-A3 formally specify
the roots of the equation. Assumption A4 formally specifies the condition on the
circuit parameters for real and distinct roots. Assumptions A5-A7, ensure the positive
values of inductance, resistance and capacitance of the circuit. Assumptions A8-A9
ensure that the time is over one time period of the system and does not include
the singularities, at t0 = 0, t = ton and t = Tp, due to switching action. Whereas,
Assumptions A10 specifies that the switching time, t = ton, lies within the open
interval defined by the single time period of the circuit.

The formal verification of Theorem 5 utilized the formally verified results of
Theorems 1 and 3.

Finally, we present the formally verified results of periodic steady-state voltage
of of the DC-DC Buck converter as:
Theorem 6: ` ∀ Vs Vout c1 c2 c3 c4 s1 s2 ton t Tp.

A1: (t ∈ (0, Tp)) ∧
A2: ∼(t = ton) ∧
A3: (ton ∈ (0, Tp)) ∧
A4: (∀ t. ∼ (t = ton) ⇒ Vout = solution Vs c1 c2 c3 c4 s1 s2 ton t) ∧
A5: (∀ t. n_vec_deri 1 (λ t. Vout t) continuous at t) ∧
A6: ∼ ( s2 - s1 = 0) ∧
A7: steady_state 1 Vout t ⇒(

Vout(0) =
( s2

s2 − s1

)[ (
Vout(0) + 1

s2

d
dt Vout(0)− Vs

)
e−tons1 + Vs

]
e−Tps1 +

( s1

s2 − s1

)[ (
-Vout(0)− 1

s1

d
dt Vout(0) + Vs

)
e−tons1 - Vs

]
e−Tps2

)
∧

(
− d

dt Vout(0) =
( s1s2

s2 − s1

)[ (
Vout(0) + 1

s2

d
dt Vout(0)− Vs

)
e−tons1 + Vs

]

e−Tps1 +
( s1s2

s2 − s1

)[ (
-Vout(0)− 1

s1

d
dt Vout(0) + Vs

)
e−tons1 - Vs

]
e−Tps2

)

Assumptions A1 and A2 formally specify the analysis over one time period with
singularities, at t = 0 , t = ton and t = Tp, excluded. Whereas, Assumptions A3
specifies that the switching time, t = ton, lies within the open interval defined by
the single time period of the circuit. Assumption A4 formally defines the output
voltage Vout as a piecewise function, over the time period, Tp, of the converter circuit.
Assumption A5 formally specifies the continuity of the function and its derivative,
to ensure the continuous conduction mode. Assumption A6 prevents the division by
zero case in the analysis, and finally, Assumption A7 defines the steady-state of the
buck converter.

The formal proof of Theorem 6 essentially consists of finding the values of the
function and its derivative at t = 0 and t = Tp , in limit sense, and the values of
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arbitrary constants c1, c2, c3 and c4 by utilizing the continuity assumption A5 and
the one-sided limits concepts due to singularities at t = 0 , t = ton and t = Tp, due
to switching action. More details about the proof can be found at [2].

The proposed foundational formalization of switching function technique and
linear differential equations allowed us to formally specify and verify the nonlinear
behavior of the DC-DC Buck converters in a very straightforward manner. Theorem
4 verifies that the implementation and behavior of the Buck converter by explicitly
specifying the conditions on the piecewise functions, e.g., voltages in the case of DC-
DC Buck converter, in the continuous conduction operating mode of the converter.
The formally verified result is very helpful in the topology selection of the converter,
which is usually the first step in the design procedure and, in practice, consists of
an intuitive selection of topology for a given design specification. Moreover, Theo-
rem 5 formally verifies the correction of the solution of the linear order differential
equations representing the power converter behavior. This result plays a vital role
in the performance evaluation. Once the implementation and behavior (Theorem
4), and the solution (Theorem 5) of the DC-DC Buck converter is formally verified,
then Theorem 6 formally verifies the relationship among different parameters of the
circuit, such as voltage and circuit components, in periodic steady-state. This result
is instrumental in formal verification of the design objectives, such as desired voltage
levels and component values, of the circuit. However, unlike traditional techniques
these formally verified results give exact conditions in terms of the parameters of the
Buck converter as they have been formally verified using a sound theorem prover.
Moreover, these results are generic in terms of universally quantified variables and
contain an exhaustive set of assumptions required for the validity of the results.

6 Conclusion

In this paper, we presented a formal methodology to conduct the formal time-domain
based periodic steady-state analysis of power converters. The power converters are
characterized by the switching functionality, which imparts to the structural changes
of the converter circuit and a nonlinear mathematical analysis. To model the struc-
tural changes in the circuit, we developed the formal model of the circuit analysis
technique, called switching function technique, and also developed a formal model
of linear differential equations to formally specify the behavior of the converters. To
cater for the nonlinearities in the analysis, the integral property of the Heaviside
step function as a generalized function is verified. This logical formalism is then
applied to the DC-DC Buck converter to formally verify the implementation and
behavior of the converter’s circuit, solution of its linear ordinary differential equa-
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tions in all modes of the converter’s circuit and the steady-state voltage relationship
of the DC-DC Buck converter.

The proposed formalization can be extended to incorporate the formal small-
signal modeling analysis of the power converters. Moreover, the formalization is
based upon the complex valued functions to formally analyze the periodic steady-
state analysis of power converters, which are characterized by the discontinuity due
to switching action, therefore, the formalization is also equally applicable to analyze
many other discontinuous phenomenon ubiquitous in many fields of Physics and
engineering.
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