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Abstract—Dynamic thermal management (DTM) techniques
are being widely used for attenuation of thermal hot spots
in many-core systems. Conventionally, DTM techniques are
analyzed using simulation and emulation methods, which are in-
exhaustive due to their inherent limitations and cannot provide
for a comprehensive comparison between DTM techniques owing
to the wide range of corresponding design parameters. In order
to handle the above discrepancies, we propose to use model
checking, a state-space based formal method, to model, evaluate
and compare DTM techniques across various functional and
performance parameters. The suggested framework includes a
modeling flow and a set of generic modules that realistically
model many-core and DTM parameters like temperature, power,
application, inter-core communication and task migration etc.
For analysis purpose, the framework provides a common ground
for comparing DTM techniques by formalizing DTM principles
and performance parameters as a set of logical properties. These
properties are verified for different task load configurations, e.g.,
multi-threaded, malleable, and the applications which do not
support migration. We analyze state-of-the-art central (c-) and
distributed (d-) DTM techniques to demonstrate the generality
and efficacy of our approach. Our formal analysis shows that
the state-of-the-art cDTM technique performs better than dDTM
in terms of achieving thermal stability, task migration and
communication overhead. We believe that conventional analysis
methods do not facilitate such an exhaustive comparison among
the DTM techniques.

Index Terms—Model Checking, Formal Analysis, centralized,
distributed, Dynamic Thermal Management, Task Migration,
Many-Core, nuXmyv, Formal Verification.

I. INTRODUCTION

UE to higher transistor density and the resulting up-

scaling of multi-cores to many-cores, thermal emer-
gencies appear as bottle-neck while achieving the desired
processing performance [1], [2]. An improper engagement of
these issues may lead to reliability concerns, malfunctioning
and even physically damaging the chips. DTM techniques
have been suggested, both at hardware and software level to
mitigate this problem [3]-[5]. The hardware DTM methods,
like Dynamic Voltage and Frequency Scaling (DVFES), mitigate
the heating problem by throttling the operating frequency and
voltage [6], [7]. Although DVEFES results in cooling of a heated
chip, yet, this solution compromises the performance [4]], [[7],
since the processor is run at a lower frequency to consume
lesser power and consequently generate less heat. An alternate
method is to employ strategies to manage processing load
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across the chip to prevent the over-heating. In contrast to
DVFS, this dynamic redistribution of tasks among the cores
results in a performance efficient solution, as the physical
parameters remain unchanged [8]]—[10].

A DTM strategy based on task migration is executed by
DTM controller(s) or agent(s) running on core(s) in a many-
core chip [11]. A DTM technique is considered as global or
centralized (c-), if a global DTM controller is implemented
on one of the cores in the system [10], [[12]]. This centralized
controller communicates with all the cores in the system and
collects parameters like temperature, core utilization etc. to
take a task migration decision. However, with a large number
of cores, the communication and computation overhead of the
centralized controller becomes the bottleneck as it becomes
quite difficult to manage the temperature of the centralized
controller itself. Moreover, a centralized controller is a single
point of failure. In a distributed (d-) configuration [13], [8]],
[14], each core in the system has a DTM controller running,
that communicates and share parameters with the other neigh-
boring DTM controllers only. Since the control is no longer
centralized in the dDTM approach, therefore, the issues of
scalability and excessive communication overhead with the
central controller are resolved.

In each of the above configurations, DTM agents moderate
the chip temperature by invoking a proactive [12], [15], or
reactive 8|, [[16] task migration algorithm. In former, the
agents develop a model of the overall thermal behavior of
the chip and use it along with various prediction techniques
to make management decisions before a temperature threshold
is violated. Whereas, in reactive DTMs, the agents initiate the
task migration once the threshold is reached for a certain core.

Based on the above-mentioned configurations, a variety of
DTM schemes have been proposed. Apart from the central
or distributed nature of the DTM controllers, these techniques
make use of various parameters, like effective chip temper-
atures, transient effects, task loads and thermal estimation
methods, to make their DTM decisions. This variety of pa-
rameters complicates the task for comparing different DTM
techniques and identifying the most effective one in terms of
performance for a given scenario becomes very challenging.
Mostly, DTM techniques are analyzed using simulation and
emulation methods [[17]], [18]. However, due to the sampling
based nature of these methods and inherent inability to test all
the possible scenarios and due to the extensive computational
cost, these methods do not guarantee a complete and exhaus-
tive analysis. In the recent years, the use of formal methods
has been strongly advocated for analyzing DTM techniques to
overcome the drawbacks in the traditional analysis methods
[19]-[22]. A detailed review of DTM analysis using formal
methods is provided in Section
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Figure 1: A comparison between simulation and model checking -based formal analysis of DTM schemes.

In this paper, we present the analysis of DTM techniques
for multi-threaded workloads using model checking, which
is a state-space based formal verification technique [23]].
Model checking allows us to cover all the possible scenarios
for a DTM technique by exhaustive state-space exploration,
that is virtually impossible to achieve through simulation or
emulation, especially for larger grid sizes.

A. Motivation

In the following, we give the motivation for the current
work and aver the need of the model checking -based formal
analysis of DTM techniques by highlighting the deficiencies
in the simulation-based analysis, as shown in Figure [T}

1) DTM Modeling and Analysis Coverage: Based on
testing methods, it is practically impossible to model and
test all the possible scenarios for a DTM scheme or any
given system, thus limiting the resulting analysis to a set of
benchmarks or parameters. This problem can be alleviated
using model checking, as it allows non-deterministic mod-
eling of system’s parameters, and the verification is based
on exhaustive exploration of the system model against a
mathematical property, rather than a few benchmarks vectors.
Also, the state-space based nature of model checking favors
the modeling of DTM schemes, which are usually represented
in a FSM or algorithm [[10]], [13]], and thus can be easily
translated to the corresponding modeling language. In contrast,
other formal methods like theorem proving etc. require the
system to be mathematically expressed as logical functions,
which can be more effort requiring in case of DTM techniques
that are mostly expressed in a sequential manner.

2) Property-based Analysis: The primary requirement of
any DTM scheme is to ensure thermal stability of the many-
core system, i.e., the deployment of the DTM ensures a safe
temperature profile of the chip. However, using simulation and
emulation, it is not possible to explicitly define and verify this
behavior of DTM. On the other hand, using model checking
allows us to mathematically define this desired behavior using
temporal logic and then verify it over the system model. In
case of DTM verification, this feature is helpful in formalizing
different scenarios during DTM execution, e.g., threshold
avoidance, thermal balancing etc., as LTL properties. On the
other hand, in other formal techniques, like theorem proving,
a notion of time or sequence has to be explicitly modeled to
allow expression of such verification properties, which results
in more modeling effort.

3) Analysis Time: The DTM simulation environments
involve processor simulators like Sniper [24] and Gem5
[25]], etc. for evaluating benchmarks against different DTM
schemes. However, the time required for these simulations

usually ranges from several hours to a few days [26], whereas,
the exhaustive model checking of a DTM model against
some desired property can be generally performed in order
of minutes to a few hours [20], [27]]. Moreover, the automatic
verification feature makes model checking an attractive choice
for the formal verification of DTM techniques, as other formal
methods, e.g., theorem proving with expressive logic, like
higher-order logic, require manual effort (and usually more
time) to verify a systems property.

4) Results and Debugging: The basic output from a DTM
simulator environment is the thermal profile of the chip against
the execution of the input benchmarks. A conclusion about the
DTM scheme has to be drawn by observing and analysing the
chip temperature. This process can be simplified using model
checking as the output from the tool is a simple yes or no
answer for the DTM verification. Moreover, an error trace is
provided by the tool in case the DTM scheme violates the
desired property. This feature facilitates the DTM designer in
identification of bugs at an early stage. In contrast, this facility
is not available in other formal methods -based analysis.

B. Scientific Challenges Targeted in this Paper

A model checking -based analysis of DTM techniques
provides a complementary approach to simulation to lead
to a reliable working of many-core systems. However, the
modeling of DTM techniques and many-core systems, and the
corresponding verification problem, poses certain challenges,
which are as follows:

1) Modeling thermal behavior of many-core system
The most important aspect of modeling a many-core system is
to imitate the thermal behavior of the cores. A formal thermal
model should capture the necessary physical properties of
the cores, as well as, it should be computationally feasible
within the available resources. In order to meet both of these
requirements, we have a thermal model, given in [28]], that
includes parameters, like inter-core resistance and capacitance.

2) Benchmarks’ modeling and completeness of analysis
Traditional DTM analysis report the experimentation results,
by giving the cores temperatures against the progress of work-
loads under test. These workloads mostly consist of predefined
standard benchmarks, which present a typical input scenario
only, and are executed on the simulator to observe the cores’
temperatures. In order to ensure the completeness of our anal-
ysis, we have modeled the workloads non-deterministically to
allow all possible input workload requirements.

3) Choice of verification properties
The extraction and formalization of DTM properties becomes
a challenging and important part of verification, since, only
an informal description of DTM system and results applicable
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to a limited scenario are provided in the literature. We have
resolved this issue by formalizing a set of DTM properties
equally applicable across different DTM techniques.
4) Handling state-space explosion issues

The refinement of the DTM model with precise details (or
any other system model for that matter) leads to the infamous
problem of state-space explosion [23]] during model checking,
wherein, the overall system model gets too big to be verified
with limited computational resources. We have tried to handle
this issue by using appropriate modeling abstractions that
minimizes the state-space of the model while capturing the
desired system’s behavior.

C. Utility and novel contributions of this work

We elaborate the utility of our approach by integrating it
within the design space exploration of DTM techniques. As
shown in Figure |2 our framework can be employed at design
level and has the following main utilities:

1) To allow the DTM designer to explore the design at
early stages and report any bugs, that can then be further
inspected using simulation and removed.

2) To help choosing a DTM technique under the given con-
straints. This is possible by the virtue of formalization of
DTM properties that provide a common analysis ground.
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Figure 2: Our framework (highlighted green) integrated into design

state exploration of DTM schemes.

The distinguishing features of this work are:

1) Modeling Methodology (Section [V) The proposed frame-
work provides a step-by-step modeling methodology for
many-core system and DTM techniques. As compared to
earlier approaches [22f], [27], this work has the following
novel modeling contributions:

a) Provision of modeling libraries. Our framework provides
different formal modules or libraries that can be used to
model various configurations of DTM techniques and
many-core systems.

b) Enhanced modeling. As compared to the existing works,
the following new models are included:

i) Thermal Model. A realistic core-temperature model,
taken from [28], that includes physical parameters,
like inter-core resistance and capacitance, whereas, in
earlier works, a simple linear relation of temperature
with the task load is assumed.

ii) Inter-core communication model. We have compared
DTM techniques by considering the inter-core com-
munication costs.

iii) Multi-threaded applications. As compared to exist-
ing works, that assume one thread per application,

our approach allows evaluation of DTMs for multi-
threaded applications.

iv) Different application configurations. We have mod-
eled applications with and without migration support,
allowing us to compare DTM techniques with a no-
task migration policy.

2) Properties Formalization (Section [V-D) We have for-
malized DTM properties, that express the overall system’s
behavior and are equally applicable across different DTM
techniques. Specifically, this work defines the LTL notation
and explanation for the following properties: a) Threshold
Avoidance b) Thermal Balancing c) Thermal Safety.

3) Performance Parameters (Section The framework
includes a set of performance properties, based on task
migration principles, to provide a common ground for
analyzing the performance of ¢cDTM and dDTM tech-
niques. In particular, to the best of our knowledge, this
work introduces the formal analysis based on the inter-core
communication cost for the first time.

To demonstrate the generality and usefulness of the sug-
gested framework, we have conducted a comparison between
state-of-the-art central [10] and distributed [8]], [13] DTM
techniques, up to a 12 x 12 many-core system.

Open-source Contributions: We have released the open-
source code for our proposed methodology and the models
for analyzed DTM schemes [29]. It will serve the purpose to
encourage application of formal tools in DTM domain and
reproduce the verification results.

II. RELATED WORK

In [19]], the SPIN model checker [30] has been used to
analyze a dDTM technique, i.e., Thermal-aware Agent-based
Power Economy (TAPE) [[16]. The functional correctness of
TAPE was verified by defining stability condition for the task
migration algorithm, and the timing properties were found by
integrating Lamport timestamps [31] in the formal model of
TAPE. The formal analysis helped to identify a couple of
issues, that were overlooked in the simulation based analysis of
the same algorithm. However, this analysis was done for a 3x3
core grid and continuous parameters, like temperature, were
abstracted using a small set of integer values. These parameters
could not be relaxed, i.e., the number of cores could not be
increased or a larger set of values could not be used, due to
state-space explosion. It is note-worthy that such abstractions
compromise the exhaustiveness of the analysis.

In [20], some of the above-mentioned issues were alleviated
by using the nuXmv model checker for analyzing a dDTM
technique [8]]. The analysis was done for up to a 9 x 9
core grid by leveraging upon the efficient state-exploration
algorithms provided in nuXmv. However, the work load was
abstracted in [20] by assuming a simple model that consumed
a power unit per unit time. The core temperature was also
abstracted by assuming it to be directly proportional to the
task load. The stability criterion was defined as the state
when the temperatures of all the cores in a many-core system
are less than the threshold temperature for triggering the
task migration. The DTM technique [8]] was verified for this
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stability condition and the number of state transitions required
to achieve the stability were also calculated.

The probabilistic model checker, PRISM [32], has also been
used for the formal analysis of TAPE, by modeling its behavior
as a Markov chain [33]]. The analysis was done up to a grid size
of 4 x4 and the probability for the maximum chip temperature
to be less than the threshold temperature was calculated. The
analysis showed that the performance of TAPE depended
highly on the weight parameters used in the technique. The
verification of TAPE for a higher grid size of 9 x 9 was done
using approximate probabilistic model checking in [21]. The
results showed that TAPE achieved thermal stability but did
not perform the temperature balancing across the chip.

A Formal Analysis Methodology for Task Migrations
(FAMe-TM), was presented in [22], for the verification of task
migration based dDTM techniques. The paper extended the re-
sults, presented in [20]], by introducing a generic methodology
applicable to any dDTM technique. In addition to the number
of transitions required for stability, new performance prop-
erties, like number of task migrations, task load completed,
number of stalled tasks, number of hot spots and time spent in
task migration were introduced. The task load and temperature
model used were similar to that of [20]. Using FAMe-TM,
two dDTM techniques [8]], [34] were formally modeled and
analyzed and compared up to 9 x 9 grid size.

In [35], a theorem proving -based framework for the anal-
ysis of dDTM was proposed to alleviate the scalability issues
in verification. This work mathematically modeled the dDTM
technique [8]] and proved certain DTM properties by defining
them as proof goals in the HOL theorem prover. The verified
properties were presented as theorems, that were valid for
a generic n X n grid size, thus overcoming the scalability
issues reported by model checking. However, since the DTM
technique was modeled using higher-order-logic, the verifica-
tion was not automatic and required user interaction to prove
the desired properties or goals. Due to the enormous user-
guidance required, the properties verified in [35] were very
basic ones, like the no-migration conditions and temperature
variation bounds per step, and thus the insights provided by
the above-mentioned model checking based approaches can be
considered more useful.

A generic comparative analysis methodology, i.e., CAnDy-
TM, applicable to both ¢cDTM and dDTM techniques, was
proposed in [27|]. The stability criteria was improved in
CAnDy-TM by formalizing different stability conditions like,
threshold avoidance, thermal balancing and safety. Inter-core
communication overhead was also considered in the evaluation
and an equation from Intel processor [36]] was used to model
the thermal behavior of the cores. Using CAnDy-TM, a
comparison between state-of-the-art cDTM [10] and dDTM
[8] techniques was presented.

Limitations of state-of-the-art: It is important to note that
in all of the above-mentioned works, the thermal behavior
of the cores has been modeled by assuming rather simple
temperature models and is related to task load in a linear
fashion. Also, the task loads running on the cores are assigned
a linear power consumption with respect to the task duration.
This assumption oversimplifies the real work loads or bench-

marks that are run during the simulation based evaluation of
DTM techniques. Although these assumptions help to reduce
the state-space of the DTM model, yet, the fine and practical
details, close to a real physical many-core system, cannot be
ensured. Moreover, a single thread per application is assumed
as opposed to multi-threaded applications, which are more
suitable for many-core systems. Thus, the behavior of DTM
techniques with different multi-threaded applications cannot be
analyzed. In the current work, we propose to alleviate these
issues by formalizing the thermal and multi-threaded appli-
cation models for many-core systems, that can be applied to
different DTM configurations. Also, the proposed models can
be easily integrated into the existing analysis methodologies,
i.e., FAMe-TM [22]] and CAnDy-TM [27].

III. PRELIMINARIES

In this section, we give an overview of the nuXmv model
checker and briefly describe the selected DTM algorithms [3]],
[10], [13]] to be analyzed.

A. nuXmv Model Checker

nuXmv [37] is a symbolic model checker that supports new
data types of Integers and Reals along with the availability of
efficient SAT algorithms and advanced Satisfiability Modulo

Theories (SMT) [38]], based on MathSAT [39]]. The main steps

in verification of a system using nuXmv are:

1) Expressing the model for the given system using nuXmv
language. This is done by creating several modules that are
instantiated in the MAIN module of the nuXmv code.

2) Writing the properties to be verified, using the Linear Tem-
poral Logic (LTL) or Computation Tree Logic (CTL) [23]].
The LTL properties are written in nuXmv using logical
operations like, AND (&), OR (]), XOR (xor), implication
(=>) etc., and temporal operators, like Globally (G), Finally
(F), Next (X) and Until (U). Similarly, quantifiers like
Exists (E) and For all (2) are provided for writing CTL
specifications.

3) The formal model of the system and the properties are
given to nuXmv for automatic verification to find out if
the system meets the specifications (properties). In case
a property fails, nuXmv provides the corresponding coun-
terexample in the execution trace of the FSM, which can be
used to debug the problem to see if it is an actual functional
bug in the given system or a modeling issue.

B. Choice of nuXmv model checker

The modeling of DTM schemes involves parameters, like
temperature, power, etc. that are modeled using integer or
real data types. The introduction of these variables (or first-
order logic) in a model requires the use of SMT solvers for
verification. These SMT solvers like [39]-[41]] employ modulo
theories, like integer and real etc., and a SAT solver to find
the satisfiability after translating the first order predicates to
boolean expressions. We can safely say that any SMT-based
model checking tool can thus be used in our approach for
verification of DTM schemes. We have chosen nuXmv model
checker in our methodology due to the following reasons:
1) DTM schemes involve a number of design variables, like

power, temperature, and other algorithmic parameters, that
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are continuous in nature. nuXmv allows variables of type
real, that facilitates us to model these values without
discretization. The earlier analyses [19], [33[] based on
other model checkers, used an abstract model of DTM
schemes by assigning integer values to these parameters,
thus compromising on the completeness of the analysis.

2) Due to the complex nature of DTM schemes and the
number of DTM parameters, the verification of DTM
models faces the issue of state-space explosion. nuXmv
deploys MathSAT SMT solver to efficiently verify large
state-space models. Based on this, we are able to verify
DTM schemes up to grid sizes of 12 x 12, as compared
to 3 x 3 and 4 x 4 in [[19]] and [33], respectively.

3) The earlier analysis [19] involved explicit use of Lamport
timestamps [31]] in the formal model for verification of
timing properties, however, using nuXmv’s built-in support,
we are able to analyze these properties without using
Lamport timestamps.

Model checking faces the infamous problem of state-space
explosion as the state-space of a model gets very large. This
issue can be resolved by taking a higher abstraction of the
given model or verifying the model using Bounded Model
Checking BMC [42]. BMC allows the verification of a model
by searching its state space within k-bound levels to find a
counterexample for the given property.

C. Multi-Objective DTM mDTM

mDTM [10] is a proactive cDTM technique that avoids
thermal threshold as well as balances the cores temperatures
across the chip. The technique is based on two central con-
trol units, i.e., Central decision Unit for Avoiding Threshold
Temperature (CU-AT) and Central decision Unit for Achieving
Thermal Balancing (CU-AB). CU-AT takes a task migration
decision, based on the predicted temperature values R 47 from
each core’s temperature predictor module, i.e., AT-Predictors
(ATP). If Ra7 of some core 7 is greater than or equal to a
Proactive Threshold ProTiy, the task is stopped and moved
to a Waiting Queue (WQ). The task from W@ is moved to
a core having temperature less than a predefined temperature
A. If there is no task to be migrated by CU-AT and W@ is
empty, then the thermal balancing module, i.e., CU-AB gets
activated. Similar to ATP, there is a predictor module on each
core for temperature balancing, i.e,, AB-Predcitors (ABP).
Using the temperature difference e, between the current core
temperature T}, and the average chip temperature T,,,, APB
predicts the future temperature difference R4p  of a core.
CU-AB migrates a task from a core if R4p > DyBal, where
DyBal is a run-time parameter that defines the balancing
threshold and is given as DyBal = Bal x N/M, and M is
the number of tasks running on a core, IV is the total number
of cores in the system and Bal is a pre-defined balancing
parameter. The algorithmic flow of mDTM is shown in Figure
[ and more details can be found in [[10].

D. Hot Spots Reduction DTM rDTM

rDTM [8]] performs distributed task migration with the
primary goal of reducing the number of hot spots in the chip.
Each core in the system runs an instance of rDTM and task
migration is invoked if the average temperature of the chip
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Figure 3: Overview and Operational flow of mDTM [|10].

is above a certain threshold. rDTM calculates this average
temperature by using a distributed average signal tracking
algorithm [J8]], which allows the average to be estimated using
temperature from neighboring cores only, without the need
of global knowledge of the temperature of every core. If a
core has a temperature greater than the estimated 7,4, then
the task is migrated from the current core to the appropriate
destination core among the neighbors only. The core amongst
the neighbors with the maximum temperature and task load
difference from the current core is selected as a destination
core for migration. The algorithmic flow of rDTM is shown
in Figure E] and more details about rDTM can be found at [8]].

(a) Task migration Method Flow
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Figure 4: A typical execution of rDTM algorithm [_8].
E. Deadline Based Task Allocation Scheme DBTAS
DBTAS [13] aims to satisfy the task deadlines (D;) while
maintaining maximum temperature by allocating tasks (77)
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according to earlier deadline first (EDF) algorithm at every
migration interval (t,,4). The scheme finds the coolest core
(C.) and its surrounding area (Z.), and selects it for task
allocation, if 50% of the cores in Z. have their temperatures
(T.) less than the threshold temperature (73). Also, the
product of rate of change of temperature d1'/dt and t,,,4, should
be equal to or less than the difference of current temperature
T} and the threshold temperature T}, ; of that particular core.
Next, a minimal voltage and frequency is chosen for the cores
Cj in Z, and the tasks are assigned in the EDF order. If a
task is missing its deadline, shown by its parameter lateness
Ly ;, then DVFS is applied to that core such that it deadline
can be met. In case, the application of DVFS cannot guarantee
the deadline safety, an exception is raised. Figure [3] gives the
flowchart for DBTAS and further details can be seen in [13].

Given task set for a migration
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—

Apply EDF to find task order :|

Calculate no. of cores, Num,
whose temp T > Ty, j in zone Z;

AT/t X tg < (T — T
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For all tasks (T;), calculate
completion time (C;) and lateness (L;)

Ve=Vmx & Li>0

Call exception handler ‘

Apply DVFS to
core (Cy)s.t. Li< 0

[]

Figure 5: Flowchart of DBTAS [13].
IV. PROPOSED METHODOLOGY

The main idea behind the proposed methodology is to have
a set of formal DTM and many-core parameters, that can
be reused to formally model the behavior of any arbitrary
DTM system. Figure [f] gives an overall flow of the proposed
methodology and each of these steps is outlined below:

1) Core Modeling. The first step in the proposed methodol-
ogy is to model the behavior of a core, that can be instantiated
to develop the many-core grid. The core model is mainly
developed based on its physical parameters, like thermal,
power, and task queue, in the core module, which

are independent of the DTM. The thermal predictor
and the migration policy modules in the core model
are inherited from the DTM being verified. The inter-core
communication mode in the comm. model can be central
or distributed and is thus also dependant on the DTM. The
details of each of these modules is given in Section [V]

2) Modeling of Many-Core Grid. The second step is to
generate a many-core grid from the core modules and map
the DTM agents to the grid. In case of cDTM, a Central
Agent module from the library is added to one core module
and the rest of the core modules are used to model the
remaining cores of the system without a DTM agent. In
case of dDTM, each core module is accompanied by a
Distributed Agent module that manages thermal con-
ditions in its neighborhood.

3) Complete System Model. The next step is to map the
task load to the many-core grid. Using the parameter thread,
a single- or multi- threaded tasks can be assigned to the cores
in the system. Similarly, the threads can be fixed to a core
using the with migration parameter.

4) Formalization of DTM Properties. After modeling the
complete many-core system with DTM agents and application
models, the next step is to write the verification properties for
the system model. We have also formalized a set of generic
functional properties for DTM techniques, using Linear Tem-
poral Logic (LTL). These properties check the functional
correctness of the given DTM scheme and verify that the
many-core system indeed achieves a thermally safe or stable
state with the given DTM scheme. More details about these
properties can be found in Section

5) Verification. Both the many-core system model and the
formal properties are given to the model checker for automatic
verification. During the verification process, a number of
performance parameters, implemented as counters in each core
module, are also calculated. The most important performance
parameter for a DTM is the number of state transitions it takes
to reach a thermally stable state. More details about these
properties are given in Section[V] In case, the verification fails,
the tool generates a counterexample which can be analyzed to
revisit the modeling of the many-core system.

V. FORMAL MODELING

In this section, we formalize the verification problem and
provide the details for the formal modeling of our many-core

Dist. DTM | |Central DTM

Core Model

Application Parameters Performance Parameters

[ Number of Threads | | Migration Allowed? |

Transitions to Stability

Thermal Model i

2

Number of Task Stalls

Power Model _):
Comm Model

Many-Core Model

] Counterexample

Number of Hotspots

Y

Thermal Predictor —
Distributed m

Model Checker

Task Load Completed
Communication Overhead

I |

I |

' [ Number of Migration |
Analysis | |
I |

I |

DTM Agents

1

1 £

DTM Properties

|

| DTM Schemes

Thermal Stability | |

Thermal Balance || Thermal Safety |

Figure 6: An overview of our proposed framework. A complete many-core system model is created using the core’s parameters and behavior
of the given DTM scheme. Next, a set of generic DTM properties is formalized. The model and the properties are passed to a model checker
for automatic verification, which evaluates performance parameters or generates a counterexample.
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system along with the modeling assumptions.

A. Problem Formalization

Consider a many-core system S, with the parameters as
shown in Figure [7(a). The basic verification problem for any
DTM scheme running on this system can be defined as:

Ve, € C, Ti(t) >Tth — Ti(t+x) < Tth (1)
where 7 is from 1 to /V and ¢ represents a point in time. Eq.
gives the basic criterion for a DTM scheme that if a core’s
temperature goes beyond a predefined threshold (at some point
in time t), then the DTM scheme should ensure that the core’s
temperature would eventually (at some point in time ¢ + x) be
brought to the allowed level as a result of migration.

B. Problem Modeling
In order to facilitate the formal modeling of the above
problem, we have developed the following generic modules:

Core’s Parameters. We have generated the following mod-
ules to capture the physical parameters of the core.

Power Model. We have assumed a linear relation be-
tween the task load L,, assigned to a core m and the power
P, required by the core to execute that task. For evaluation
purpose, we have assigned a unit power to each unit load, i.e.,

Thermal Model. The thermal model relates the cores’s
temperature to its power consumption. We have modeled the
thermal behavior of a core based on the Equation E] [28]. The
results in [28] show that this model closely relates to thermal
simulators like Hotspot [43]] and therefore realistically models
the thermal behavior of the core.

T =Ta+ Y Cun x P(n),¥m e M 3)

neM

where Ty, is the temperature of a core m, P(n) is the average
power consumption during task execution time on core n € M
(M being the set of all the cores) and T4 is the ambient
temperature. The matrix C is computed based on the thermal
parameters of the processor. Equation [3] takes into account
the effects of the surrounding cores on a core’s temperature.
For example, the amount of change in temperature of the m!"
core caused by the n'" core is given by C,n times the change
in power of the n'* core. For experimental purposes, we have
taken the thermal effects of the 8-neighborhood only, as shown
in Figure b). The reference values for C,,, ,, are taken from
[28]] after scaling them to per power unit. For example, in
Figure b), Cop,2 means that temperature of Core 0 will rise
by 0.156°C when Core 2’s power increases by 1 Watt [28].
The values for C,, , for one-hop and diagonal neighbors are

Core Core Core

Distributed DTM

0.156°C/W and 0.131°C/W, respectively, whereas the intra-
core Cy, ,, Where m = n, is taken as 0.366°C/W [28]].

Assumption: Since the above model does not take into ac-
count the transient thermal effects, therefore, we have assigned
task durations to be long enough to ignore these effects. This
assumption is justified as the current temperature of a core at
time ¢, approaches the steady-state temperature with increasing
t, as given by equation |4 [28].

T(t)=PxR+Ts— (PxR+Ty—T)eRe  (4)

where T4 and T; represent the ambient and the initial tem-
perature respectively, and R and C are the thermal resistance
and the thermal capacitance respectively.

Communication Model. The core arrangement in the
many-core system is shown as a 2-D grid as shown in Figure
[Ac). In case of a dDTM scheme, each core communicates
with its neighbors only, through a simple core to core com-
munication bus as shown in Figure [7(c). Whereas in case of
a cDTM, each core talks to a central core only. This commu-
nication includes 32-bit values for temperature (Core_temp),
core ID (Core_ID) and destination core ID (Dest_ID) for
migration. One bit each is used to indicate a threshold violation
(Tth_viol) and whether a destination core has been found or
not (Core_found).

Assumptions: We have assumed a shared memory model
for the many-cores in our system. In case of a migration,
only a minimal data structure, i.e., pointers (32-bit each)
to the program (Prog_ptr) and data memory (Data_ptr), is
transferred from one core to another. Therefore, for modeling
task migrations, we assume a minimum time effort, i.e., one
transition, to carry out migration once a migration core has
been identified by the task migration policy in the given DTM.

Task Queue. We have modeled a simple task queue to
handle the tasks executing on each core in the many-core
system. The task (thread) queue is allocated the thread of a
task with the parameters chosen non-deterministically from
the task model, explained later. In addition to these threads, a
migrated thread may also be assigned to the queue depending
upon the migration request.

DTM Parameters. We have formalized the following
generic modules, that can be instantiated to build the model
for the given DTM technique.

Central DTM Agent. The Central Agent module
implements the central or global controller. This module
communicates with all the other cores or a set of cores in the
system and exchanges information related to the temperature
and task loads. In case, if one of the cores violates the

Central DTM ] core Model

N: Total Number of Cores

M Distributed DTM Agent
M Central DTM Agent

[ Local Memory

1 — Inter-Core Communication
(Core ID, Core Temperature,

Threshold Violation, Found

C: Set of Cores SNe 1L AA_
L: Core Core F Core % Core >
c: Task Load of Core ¢ 41 (l) LS S
T Temperature on Core ¢ el ool Tooml |2l ‘+
T¢p,: Threshold Temperature 6 7 3 =
Byy: Balance Threshold s

[---0131 — 0.156]

iy
o

Destination Core)

(b) Neighborhood effects
on Core’s Temperature

(a) Many-core System
Parameters

(c) Inter-Core Commnication Modeling

— Migration Parameters (Data
& Program Memory Pointers)

Figure 7: Formal Modeling of different parameters. (a) and (b) show parameters for a many-core system and inter-core thermal effects,
respectively. (c) shows inter-core communication, where the cores communicate with their neighborhood (dDTM) or a central core (cDTM).
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threshold temperature, then it sends request to the Central
Agent to find an appropriate core for task migration. The
central Agent module then runs the task migration al-
gorithm provided by the selected DTM technique to find a
destination core for task migration.

Distributed DTM Agent. The Distributed
Agent modules implement the behavior of a distributed
controller and are associated with every core in the system
while the information parameters can be exchanged with
the neighboring cores only. The Distributed Agent
modules in a neighborhood take the DTM decision locally
whenever task migration is required.

Thermal Predictor. Certain DTM techniques [10]
use a predictor to estimate the core temperature in the future
to take a pro-active decision. The thermal predictor
module models this aspect of the given DTM technique. The
details of this module are governed by the specific DTM and
it is not used in case a DTM technique does not employ a
thermal predictor. In our case study, mDTM [10] employs a
predictor module and its details can be found in Section [[II-C

Migration Policy. Themigration policy mod-
ule implements the task migration behavior of the DTM tech-
nique. This module contains the information of the threshold
violation condition and the migration criterion from one core
to another. In case of the cDTM technique, this module
runs only on the central DTM agent. In case of the dDTM
technique, each distributed DTM agent runs this module, as
each core has to find the appropriate destination core on its
own for migration.

Application Parameters. In order to generate an appli-
cation model to be run on our many-core system, we have
developed the following modules:

Single-thread and Multi-thread. In our applica-
tion model, we have generated separate modules for single and
multi -threaded tasks. As the name indicates, these modules
are used to model the behavior of the tasks to be run on many-
core system by generating single and multi-threaded tasks.

With migration and Without Migration. Some
applications do not allow task migration and thus always
reside on the cores that are assigned to them during the
initial mapping on a many-core system. If such an application
is chosen to run on the system, then, in case of a thermal
emergency, the application is halted until the core cools down,
i.e., the many-core system runs without a software-level DTM
technique. However, in case of a malleable application, the
application threads can be moved from one core to another as
required with the help of the DTM technique.

Tasks load and assignment In contrast to simulation, which
test the DTM for the given benchmarks only, model check-
ing exhaustively explores the state-space of the given DTM
against the required specification. Therefore, in our models,
the mapping of tasks and threads to the cores is done in
a non-deterministic fashion and each thread is assigned a
non-deterministic load. This approach allows us to verify the
functionality of DTM for any arbitrary task load. We have
defined a task by three parameters, i.e., number of threads,
load and duration.

Assumptions: For experimental purpose, we have considered

up to 5 threads for an application with load per thread ranging
from 1 to 10 load units and duration from 1 to 5 time units.
Moreover, we run a total of 400,000 load units on our system
model. These values are taken for evaluation purposes only
and our task model is not restricted to these values.

C. Interaction between modules

In this subsection, owe describe the interactions between the
different modules mentioned above with the help of their state
diagrams, given in Figure || The conditions for transitions are
shown in blue color and italicized blue is used for internal
events or local conditions. The statements in green show the
assertions and the updates in the values of different variables
(the local updates are given in italics), as a result of these
transitions. These modules interact in a synchronous manner
to model the overall behavior for a many-core system running
a DTM scheme.

The module for task queue, shown in Figure Eka),
provides the tasks to be executed on the core. Initially, the
queue is filled with a non-deterministic set of loads or tasks.
This module checks for the condition Task_req to provide
a next task for execution. The next task could be a new task
(Core_task) with non-deterministic parameters (Task_param
= nondeterministic) or a migrated task (Migrated_task and
Task_param = Migrate_task_param) from another core de-
pending upon the Migrate condition. Once a task is completed
and checked using the condition Task_completed, the queue
returns to its initial state to generate the next task.

The task parameters are passed on to the application
module, shown in Figure @Kb), that models the execution
of thread(s). In case of a multi-threaded application, several
instances of this application module are invoked to model
a task with several threads. When the New_task condition
is met, the task starts executing if the core’s temperature
Core_temp is less than the threshold Tth. Core_temp is
calculated based on Equation [3] using the core’s power
consumption, which is linearly related to the Load from
task queue. The core’s temperature can also be passed
to an optional (depending upon the chosen DTM scheme)
thermal predictor module to predict the core’s future
temperature (Temp_predict) for defining Tth. In case of a
threshold violation, the application module generates the
Invoke_migration signal, which is passed to the migration
module (Figure c)). The application module waits for
migration, based on the Migrate = 0 condition. When the
suitable core is found (Migrate = 1), the task execution
resumes. The application module also updates the values
for local variables like Time_rem to keep record of task
completion.

The migration module, shown in Figure [§fc), receives
the Invoke_migration condition from application mod-
ule to trigger the task migration algorithm. Once a core is
found (Core_found = 1), the migration module sends
the (Migrate =1) condition to the communication module
Figure [§(d) along with the information of source and the
destination core. The communication model transfers 32-
bit values for temperature (Core_temp), core ID (Core_ID),
one bit for threshold violation (Tth_viol) between the neigh-
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Figure 8: State diagrams for different modules used in the modeling. Task Queue (a) passes a new or migrated task to Application module
(b), which executes the task or invokes a migration request, depending upon the core’s temperature. In case of a migration request, Migration
module (c) tries to find a destination core. Communication module (d) transfers the respective core and migration parameters.

boring cores or to a central core. In case of a migration
(Migrate = 1), the id of the destination core (Dest_ID =
Migrate_in_core) and pointers for data and program, i.e.,
Data_ptr and Prog_ptr are also transferred between the
cores. The internal condition Migrate_done = 1 is checked
to determine the completion of the migration.

D. Functional Properties

The functional properties check the desired working of
DTM schemes and verify the stability of a many-core system
with a given DTM scheme. We have defined different variants
of the stability condition as a DTM scheme should ideally
keep the average chip temperature below a certain threshold
as well as minimize the thermal gradient across the chip.

Stability w.r.t. Threshold Avoidance: GF'(T,.,, < i)
Where G and F represent the LTL operators Global and Future,
respectively. This LTL property describes the scenario when
the average chip temperature, i.e., T,,4, €ventually becomes
less than the predefined threshold temperature 73,. In other
words, the thermally stable state of many-core system is
achieved with respect to threshold avoidance. The G F' operator
ensures that our property is valid somewhere in future F,
across all the execution paths (globally) G of the state-space
model of the DTM scheme.

Stability w.r.t. Thermal Balancing: GF((T1 — Toyy <
Tbal) A (TQ - Tavg < Tbal) VANRTRIVAN (Tn —Tavg < Tbal))
Besides avoiding the threshold for the average temperature of
the many-core system, we also check if a given DTM scheme
maintains thermal balance across the chip. The overall system
is said to be in a stable state with balanced temperature if the
temperature difference of each core in the system with 75,
is less then an allowed threshold variation Tp,;.

Thermal Safety: GF((Tovg < Tin) A (T1 — Tovg < Thar) A
(Tg — Tavg < Tbal) VANVAN (Tn —Tavg < Tbal))

A many-core system is said to be in a thermally safe condition
when its 75,4 is below T3, as well as the respective temper-

ature difference of each core with Ty, is less than Tjq;. The
LTL specification shows that such a DTM scheme satisfying
this formal property will eventually reach a thermally safe state
in its course of execution for all possible paths.

E. Performance Properties

We have taken the performance metrics presented in [22] for
dDTM techniques and extended them to cDTM. We have also
added communication bandwidth as one of the performance
metrics. All the performance parameters have been calculated
by executing the system traces (using the nuXmv command
execute_trace) or runs for worst-case scenario, i.e., till
the system achieves the thermal stable state. The performance
properties are evaluated by implementing counters in nuXmv
model that run till the DTM scheme reaches a thermally stable
state. The performance properties are detailed as follows:

Number of transitions required for stability: For a ther-
mally stable DTM, the most important aspect about its perfor-
mance is the measure of how quickly the DTM scheme reaches
the stable state. Transitions to stability indicate the maximum
(worst-case) number of transitions required by the many-core
system to reach the thermal stability state. Using such a formal
comparison, an easy choice can be made between the given
DTM schemes for a many-core system.

Task load completed: To compare the performance of
DTM schemes in terms of completed task load, while achiev-
ing thermal stability, we calculate this parameter by adding the
task load completed on all individual cores. A DTM scheme
resulting in more number of completed tasks indicates an
efficient underlying task migration policy.

Number of task migrations: The task migration based
DTM schemes, mitigate thermal emergencies in a system by
migrating a task from a hot spot to an appropriate core or by
redistributing load to achieve thermal balance across the many-
core chip. Therefore, a performance efficient DTM scheme
should carry out minimum task migrations while achieving a
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stable state, resulting in a lesser performance overhead.

Number of task stalls: DTM schemes stall the execution of
a task, if it is running on a hot spot and a destination core
cannot be found for task migration. A task stall is necessary
to avoid the over heating of the chip, however, it compromises
the performance of the system because of the waiting time
spent by the heated core to cool down before starting a new
task. Thus, a performance efficient DTM scheme should result
in fewer task stalls.

Number of hot spots created: In addition to task migra-
tion aspects, an important performance metric for DTM eval-
uation is the number of times a many-core system crosses
the thermal threshold or becomes a hot spot, under a given
DTM scheme. An inefficient DTM scheme may result in a
task migration decision with adverse effect on the number of
hot spots. Therefore, analyzing a DTM scheme in terms of hot
pots created is critical, as continued heating of a chip might
result in physical damage and reliability issues.

Communication overhead: We have also calculated the
communication bandwidth required by a DTM scheme and
the total data transferred between the cores till the stability is
achieved. This parameter is important as the communication
overhead may significantly hinder the performance of a DTM.
Also, a comparison based on the communication load can be
helpful in choosing a DTM configuration for different grid
sizes. For calculating the communication overhead, we have
modeled a shared memory system for the many-core systems.
Please see Communication Model in Subsection for
further details on the communication model.

VI. CASE STUDY

We have taken state-of-the-art DTM algorithms [S8]], [10],
[13] from both the domains and analyzed them using the
suggested framework. In this section, we provide the details
for our experimental setup followed by functional and perfor-
mance verification results. For details of the selected DTM
algorithms, please see Section [[TI}

A. Experimental Setup

For verification purpose, we have used the bounded model
checking (BMC) approach in nuXmv, with the help of
msat_check_ltlspec_bmc command [37]. This com-
mand employs MathSAT SMT solver [39], under the hood
of nuXmv model checker, to ensure the verification of LTL
properties up to a desired bound k over infinite state models,
i.e., containing integer and real variables, as in case of DTM
modeling. In our experimental setup, we have taken k& = 100.
However, our proposed approach is not restricted to the use of
BMC for verification. Our approach would result in a complete
or unbounded verification, if the tool employed can completely
check LTL properties over the models containing real and
integer parameters.

The verification of the selected DTM schemes has been
done for different grid sizes of 3 x 3, 4 x4, 6 x 6, 9 x9
and 12 x 12. We have used nuXmv 1.0.1, running on a Intel
Core 17-6700T Quad-Core server operating at 3.06 GHz with
32 GB of RAM. We have run the models for DTM techniques
at two different values of threshold temperature for invoking

task migration, i.e., 41.5°C and 80°C. The two values have
been chosen to analyze the behavior of DTMs w.r.t. different
temperature thresholds. The results have been produced for
both the application models, i.e., the ones that support and do
not support task migration.

B. Functional Verification

We have verified the selected DTM techniques mDTM
[10], rDTM [8] and DBTAS [13] for the functional properties
introduced in Section and the verification results are
given in Table It shows that mDTM meets the three
stability criteria defined by functional properties. However,
rDTM and DBTAS achieve stability only in terms of threshold
avoidance and do not satisfy thermal balancing and safety
properties. Also, if a No DTM policy is applied (equivalent
to running an application model without migration allowed),
then the system still achieves thermal stability w.r.t. threshold
avoidance. However, this stability comes at a heavy cost in
terms of other performance parameters as discussed in the
following Subsection. A thermally unsafe DTM technique may
cause reliability issues and even result in physically damaging
the chip. mDTM ensures thermal safety of the many-core
system by attaining stability w.r.t. both threshold avoidance
and thermal balancing, due to separate controllers for each
purpose. Therefore, mDTM seems a better choice than rDTM,
DBTAS and No DTM as the foremost objective of a DTM
scheme is to achieve thermal stability in a many-core system.

Table I: Verification of Functional Properties

DTM Scheme mDTM | rDTM | DBTAS No
Functional Property [10] 8] [13] DTM
Threshold Avoidance v v v v
Thermal Balancing v X X X

Thermal Safety v X X X

C. Performance Evaluation Results

We have also compared the DTM techniques for perfor-
mance parameters by monitoring their respective counters em-
bedded in each core module. These performance counters are
evaluated till the DTM achieves thermal stability and provide
further insights into working of the given DTM schemes.
Figure [9] shows the number of transitions required by each
DTM technique and a No DTM policy for different grid sizes
to reach a thermally stable state with threshold avoidance.

(@) Typ, = 41.5°C (b) T, = 80°C

o LE+10 | mmDTM rDT™M mDTM always achieves
S 1E+08 DBTAS @ NoDTM stability in lesser number of
] transitions for all grid sizes.
& 1.E+06
'_
‘s 1.E+04
(<5
|||||”H il |||H
Z 1.E+00

GridSize 3x3 4x4 6x6 9x9 12x12| 3x3 4x4 6x6 9x9 12x12

Figure 9: Number of transitions required by given DTM schemes to
achieve threshold stability.

Table II [II] shows the results of other performance prop-
erties for different gird sizes till the stability w.r.t. threshold
avoidance and Figure [[] presents these results on a logarithmic
scale. We give some of the key observations as follows:

Observation 1: The verification of the performance prop-
erties shows that the central DTM, i.e., mDTM outperforms
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Table II: Verification Results for Performance Properties

Performance Parameters at 7, = 41.5°C

Performance Parameters at 7,5, = 80°C

Tec?lz?:ues (s;.rzlg Hot Task Task Load ‘Taslf Hot Task Task Load .Tasl.(
Spots Stalls Completed | Migrations Spots Stalls Completed | Migrations
3x3 214 214 1870 1083 55 55 14947 148
mDTM 4 x4 1548 1548 12879 7500 430 430 116970 1152
(0] 6 X6 14834 14834 133294 82562 2512 2512 695067 6835
. 9 X9 286935 286935 2203922 1865774 27825 27825 7702786 75738
12 x 12 4806162 4806162 24051670 42370414 673051 673051 186326176 1832008
3 x3 99 68 1019 1834 26 18 9220 251
DTM 4 x4 763 484 8523 12701 212 137 72144 1949
8 6 X6 6875 4704 82886 139823 1166 798 428698 11576
: 9 X9 132970 90980 1061836 3159778 12895 8823 4750857 128263
12 x 12 2227251 1523902 13229740 71756345 311904 213408 114920622 3102592
3x3 145 138 1395 1482 41 32 12468 200
DBTAS 4 x4 1164 1022 10038 10254 346 307 100458 1551
i3] 6 X6 11609 10448 115603 118921 1967 1771 600934 9846
. 9 X9 224545 202091 1746365 2687414 21776 19598 6659586 109090
12 x 12 3761118 3385002 19936234 61029285 526705 474034 161091726 2638778
3x3 1356 1356 1130 0 347 347 10558 0
4 x4 11732 11732 4904 0 3254 3254 68692 0
No DTM 6 X6 126081 126081 23918 0 23143 23143 366954 0
9 X9 2931492 2931492 868913 0 284272 284272 3383142 0
12 x 12 | 53228143 53228143 17581079 0 | 7454026 | 7454026 75492433 0

Number of Task Stalls

Number of Completed Task Load Number of Task Migrations

1.E+08
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Figure 10: Evaluation of performance parameters. DTM schemes are compared based on different parameters derived from DTM principles.
These parameters are implemented as counters in DTM models and evaluated till the DTM schemes achieve threshold stability.

rDTM, DBTAS and the case of a No DTM policy. For a 12 x
12 grid size and threshold temperature of 80 °C, the number
of transitions required by mDTM to achieve threshold stability
are 58.4%, 45% and 72% less than rDTM, DBTAS and No
DTM, respectively. This observation shows that mDTM adopts
a more efficient DTM policy than rDTM and DBTAS to
achieve threshold stability. This comparison is made w.r.t.
threshold avoidance as rDTM, DBTAS, and a No DTM policy
do not meet the thermal safety criterion.

Observation 2: Although, a No DTM policy results in
stability w.r.t. threshold avoidance, yet, it behaves poorly
in performance metrics. Since a no DTM policy does not
invoke any task migration, therefore, it halts the task on the
corresponding cores and waits for the core to cool down (while
involving temperature effects from the neighboring cores as
the tasks running on them are completed) to resume the
task. This behavior leads to an increase in the number of
transitions to reach a stable state and creates more hot spots.
For example, without a DTM, for a 12 x 12 grid size and
threshold temperature of 80°C, it takes 3.58, 2.03 and 1.49
times more number of transitions to achieve stability than
mDTM, DBTAS and rDTM, respectively. Also, the number
of hot spots generated as a result of No DTM policy is 11,
14.15 and 23.8 times greater than mDTM, DBTAS and rDTM,
respectively. Similarly, task load completed also decreases in
comparison with DTM techniques, as shown in Figure [I0]

This observation signifies the need for a DTM in a many-
core system, as a no DTM policy adversely affects the overall
performance of the system.

Observation 3: For the same grid size, mDTM performs
1.69 and 1.44 times lesser task migrations as well as completes
62% and 15% more tasks as compared to rDTM and DBTAS,
respectively. This observation shows that mDTM achieves sta-
bility with more efficiency and lesser overheard than DBTAS
and rDTM, owing to an effective task migration policy.

Observation 4: Another interesting insight is that the
number of hot spots are equal to the task stalls for mDTM,
however, in case of rDTM, the number of hot spots is different
than task stalls. This is because that rDTM discards a task if
it cannot find a suitable destination core for the migration
whereas mDTM halts the task till a suitable core is found.
Due to the same reason, rDTM results in 53.6% lesser hot
spots as compared to mDTM. However, this increase in the
number of hot spots in mDTM as compared to rDTM does
not affect the overall performance of mDTM due to its better
DTM controller, as discussed in Observations 1 and 3.

Observation 5: Table [[Il shows the number of state tran-
sitions required by mDTM to achieve stability according to
different criteria mentioned in Section Since, thermal
safety is a more strict LTL property than the other two stability
properties and explicitly involves both of them, the number of
transitions required to reach a thermally safe state is always
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greater than that required to achieve the other stability criteria.
Table I1I: Transitions to stability criteria for mDTM [10]

Grid Threshold = 41.5 °C
Size Thermal Thermal Thermal
Threshold | Balancing Stability
3 x3 11808 59783 172521
4 x4 88165 499273 1436493
6 X6 921024 5351364 15443057
9x9 24230016 128285512 370208551
12 x 12 | 459095040 | 1369334335 | 3951648723
Threshold = 80 °C
3 x3 347 59783 172521
4 x4 2755 499273 1436493
6 X6 16069 5351364 15443057
9x9 178076 128285512 370208551
12 x 12 4307513 | 1369334335 | 3951648723

Observation 6: Figure shows the average number of
communication bits transferred by each core till the stability
is achieved. This graph shows that for smaller grid sizes,
the communication overhead for mDTM is less than rDTM
and DBTAS. For example, for 3 x 3 grid size, mDTM
requires 4.62 and 3.08 times less number of bits than rDTM
and DBTAS, respectively. However, for larger grid sizes, the
communication volume for mDTM is greater than rDTM
and DBTAS, respectively. For example, for a 12 x 12 grid
size, mDTM requires 3.85 and 1.58 times more number of
bits than rDTM and DBTAS, respectively. This trend shows
that for smaller grid sizes (up to 6 x 6), the central DTM,
i.e., mDTM, performs better than the distributed yDTM and
DBTAS, in terms of communication overload. This is due to the
reason that the cDTM technique has a single DTM controller
running on a central core and with the increasing grid size,
the bandwidth requirement of the central core increases (as the
same central core has to communicate with a larger number
of cores) more steeply than that of dDTM. This observation
also highlights the communication bandwidth as one of the
bottlenecks of the centralized DTMs.

1.E+10 At larger grid size

+mDTM

2 1E+09 mDTM > DBTAS >rDTM DBTAS
[a0]
5 1.E+08 o™
3 o | At 6 X 6 grid size
£ LE07 mDTM = DBTAS = rDTM
p=}
Z LE+06 At smaller grid size

1LE+05 - mDTM < DBTAS < rDTM
GridSize 3x3 4x4 6x6 9x9 12x12

Figure 11: Comparison of communication overhead per core.

Observation 7: Figure shows verification time for the
stability criteria mentioned in Section for mDTM. Since,
thermal safety is a more strict LTL property that implicitly in-
cludes the other two stability criteria, therefore, its verification
requires more time than the other two LTL specifications.

Observation 8: Table shows the memory requirements
for verifying the stability property for the selected DTM
techniques. It shows that the memory requirement for mDTM,
rDTM and DBTAS is almost the same (DBTAS requiring 1%
and 12% more memory for 4 x 4 grid size than rDTM and
mDTM, respectively). For grid sizes 6 x 6 and greater, all the
DTM algorithms make use of the maximum available system
memory. This behavior shows the growth in the state-space,
and thus complexity, for DTM techniques with the increase

Z 400 [@Ta=s1.5¢]
2 a) Ty = 41.5°C __ | mThershold
E 300 @ Avoidance
= 200 m Thermal
£ 100 ﬂ Balance
E 0 — O Thermal
Grid Size 3x3 4x4 6x6 9x9 12x12 L Safety
z% ~
E Thermal safety
e 40 [ always requires
£ 20 [H | more time for
F oo — ml | verification.
Grid Size 3x3 4x4 6x6 9x9 12x12

Figure 12: Verification time required by mDTM [[10]
in number of cores. The differences among the verification
times for mDTM, rDTM and BDTAS, are also negligible
(a difference of 0.9% between mDTM and rDTM, and 6%
between mDTM and DBTAS, for 12 x 12 grid size, and
reduce with an increasing grid size. Hence, based on our
analysis, we can safely state that the computational com-
plexity of mDTM, rDTM and DBTAS, for achieving thermal
stability with threshold avoidance is the same. Moreover, this
observation also shows that for the same complexity, mDTM
performs better in terms of performance parameters (Please see
Observations 1, 3 and 4) due to an efficient DTM controller,
assenting to mDTM behavior depicted in earlier observations.

Table IV: Verification time and memory for threshold stability

DTM Grid Memory (MB) Verification time (Sec)
Techniques Size T;,=41.5°C | T;,=80°C | T;,=41.5°C | T;,=80°C
3 %3 18179 11294 774 158
Tx4 26197 19014 943 183
mﬂg,M 6% 6 31289 31289 1761 636
] 9% 31289 31289 9330 1847
VERY 31280 31289 17432 3278
3x3 17984 11204 830 168
Ix4 29056 20277 992 192
”?gM 5% 6 31289 31289 1831 660
] %9 31289 31289 9478 877
2% 12 31289 31280 17276 3189
3x3 19257 11981 855 74
Tx4 29423 21455 1031 200
Dﬁg‘.*s 66 31289 31289 013 60T
' %9 31280 31289 T0016 1984
% 12 31289 31289 18483 3412

VII. COMPARISON WITH STATE-OF-THE-ART

A comparison of the proposed framework with the existing
works is given in Table [V] with the following key insights:

1) Our framework provides generic modules that can be used
to formally model DTM and many-core systems.

2) We include a realistic thermal model in framework that
incorporates the impact of neighboring cores.

3) We have included the inter-core communication cost.

4) Our framework provides for the evaluation of DTM
techniques against multi-threaded applications.

5) Our modeling includes different task loads or application
configurations that allows us to analyze the scenario of a
no DTM policy against different DTM schemes.

VIII. CONCLUSION

In this paper, we have proposed the use of model check-
ing for analysis and comparison of central and distributed
DTM schemes under multi-threaded workloads considering
malleable and without migration models for applications. A
complete thermal model capturing effects of the neighboring
cores, thermal resistance and capacitance, is integrated in our
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Table V: Features Comparison of the proposed framework

Analysis Framework Features Ismail et al. [19] | Shafaq et al. [21] | FAMe-TM [22] | CAnDy-TM [27] | This Work

Provision of generic modules X X X X v/
. Central X X X v v
DTM Configuration Distributed 7 7 7 7 7
Threshold Avoidance v v dDTM Specific v v
Stability Criteria Thermal Balancing X X X 4 v
Thermal Safety X X X v v
Application Model Multi-Threaded X X X X v
Neighbor Effect X X X X v
Thermal Model Thermal Resistance X X X v v
Thermal Capacitance X X X X v/
Communication Model X X X v v

Maximum Grid Size 3x3 9 x9 9 x 9 12 x 12 12 x 12

Tool Used SPIN PRISM nuXmyv nuXmv nuXmyv
Open Source v v v v v

model. Moreover, we have presented some key have provided
functional properties and performance parameters. The func-
tional properties define different thermal stability conditions
for a DTM whereas the performance parameters evaluate a
DTM with the help of task migration principles. Using our
proposed framework, the state-of-the-art DTM schemes from
central and distributed domains have been compared using the
nuXmv model checker. Our verification results show that the
central DTM technique, i.e., mDTM [10] achieves a thermally
safe state by satisfying the threshold avoidance and tempera-
ture balancing stability criteria. Whereas, the distributed DTM
technique, i.e., tDTM [8] and DBTAS [[13]] achieve stability
only in terms of threshold avoidance. Further analysis with the
help of performance parameters shows that if no DTM policy
is applied to the many-core system, the system still achieves
stability w.r.t. threshold avoidance, but at the cost of degrada-
tion in performance. As compared to rDTM and DBTAS, the
time required by mDTM to achieve the threshold stability is
58.4% less and 45%. The analysis also reveals that, for smaller
grid sizes (up to 6 x 6), the centralized mDTM performs
better in terms of communication overhead as compared to
the distributed rDTM and DBTAS schemes. However, for grid
sizes greater than 6 x 6, rDTM and DBTAS schemes perform
better than the central mDTM. We believe that the traditional
analysis methods, like simulation or emulation, cannot provide
a fair comparison between various DTM configurations due to
their incompleteness. Whereas, this work provides a common
comparison ground for DTM analysis and highlights many
insights about the given DTM schemes [8]], [10]], [13]]. We
have also provided open-source access to the code [29] for
our work, to facilitate reproduction of results and designing
of DTMs with formally verified properties.
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