
Proof Searching in HOL4 with Genetic Algorithm
M. Zohaib Nawaz

National University of Sciences and

Technology, Islamabad, Pakistan

mnawaz.mscs16seecs@seecs.edu.pk

Osman Hasan
National University of Sciences and

Technology, Islamabad, Pakistan

osman.hasan@seecs.edu.pk

M. Saqib Nawaz
Harbin Institute of Technology,

Shenzhen, China

msaqibnawaz@hit.edu.cn

Philippe Fournier-Viger
Harbin Institute of Technology,

Shenzhen, China

philfv8@yahoo.com

Meng Sun
Peking University, Beijing, China

sunmeng@math.pku.edu.cn

ABSTRACT
Proof searching and proof automation are the two most de-

sired properties in interactive theorem provers (ITPs) as they

generally require manual user guidance, which can be quite

cumbersome. In this paper, we provide an evolutionary proof

searching approach for the HOL4 proof assistant, where a

genetic algorithm (GA) with different crossover and muta-

tion operators is used to search and optimize the proofs in

different HOL theories. Random proof sequences are first

generated from a population of frequently occurring HOL4

proof steps that are discovered with sequential pattern min-

ing. Generated proof sequences are then evolved with GA

operators (three crossover and two mutation) till their fit-

ness match the fitness of the target proof sequences. Various

crossover and mutation operators are used to compare their

effect on the performance of GAs in proof searching. Ob-

tained results suggest that integrating GAswith HOL4 allows

us to efficiently support proof finding and optimization.

CCS CONCEPTS
• Theory of computation→ Evolutionary algorithms;
• Computing methodologies → Genetic algorithms; •
Software and its engineering → Formal methods.

KEYWORDS
HOL4, Genetic algorithm, Crossover, Mutation, Proof se-

quences, Fitness

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SAC ’20, March 30-April 3, 2020, Brno, Czech Republic
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6866-7/20/03. . . $15.00

https://doi.org/10.1145/3341105.3373917

ACM Reference Format:
M.ZohaibNawaz, OsmanHasan,M. Saqib Nawaz, Philippe Fournier-

Viger, and Meng Sun. 2020. Proof Searching in HOL4 with Ge-

netic Algorithm. In The 35th ACM/SIGAPP Symposium on Applied
Computing (SAC ’20), March 30-April 3, 2020, Brno, Czech Republic.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3341105.

3373917

1 INTRODUCTION
Theorem proving is a key formal verification method and

is widely used for the analysis of both hardware and soft-

ware systems. In theorem proving, the system that needs to

be analyzed is first modeled and specified in an appropri-

ate mathematical logic. Important/critical properties for the

system are then verified using theorem provers [7] based on

deductive reasoning. The initial objective to develop theorem

provers was to enable mathematicians to prove theorems

using computer programs within a sound environment. How-

ever, these mechanical tools have evolved with time and now

play a vital role in themodeling and reasoning about complex

and large-scale systems, especially safety-critical systems.

Theorem provers can be categorized into two main types:

Automated theorem provers (ATPs) and interactive theorem

provers (ITPs) [15]. ATPs are generally based on proposi-

tional and first-order logic (FOL) an involve development of

computer programs that can automatically perform logical

reasoning. However, FOL is less expressive in nature and

cannot be used to define complex problems. On the other

hand, ITPs are based on higher-order logic (HOL), which

allows quantification over predicates and functions and thus

offers support for rich logical formalisms such as dependent

and (co)inductive types as well as recursive functions. This

expressive power leads to the undecidability problem, i.e.,

the reasoning process cannot be automated in HOL and re-

quires some sort of human guidance during the process of

proof searching and development. That is why ITPs are also

known as proof assistants. Some well-known proof assistants

are HOL4 [21], Coq [1] and PVS [19].

Most studies on designing proof assistants aim at facilitat-

ing the user in the proof checking process while ensuring

https://doi.org/10.1145/3341105.3373917
https://doi.org/10.1145/3341105.3373917
https://doi.org/10.1145/3341105.3373917

SAC ’20, March 30-April 3, 2020, Brno, Czech Republic M. Zohaib Nawaz, Osman Hasan, M. Saqib Nawaz, Philippe Fournier-Viger, and Meng Sun

proof correctness. Nevertheless, users often have to do a lot of

repetitive work in ITPs to prove non-trivial tasks that is not

only laborious but consumes a large amount of time. Proof

guidance and proof automation along with proof searching

are extremely desirable features for ITPs. To support these

features, machine learning and data mining techniques have

been used [3, 6, 10–12, 17] for proof searching, proof automa-

tion and for the development of proof tactics/strategies. In

this paper, we propose to use evolutionary algorithms to find

and evolve proofs in ITPs due to their suitability to solve

search and optimization problems.

The focus of this paper is on proof searching and opti-

mization in HOL4 using evolutionary algorithms. In HOL4,

proof scripts for a particular theory are stored in a separate

file. A particular proof goal in HOL4 depends on the spec-

ifications inside the theory and it can be completed with

different combinations of proof steps and tactics. Because

a HOL4 theory often contains too much information, it is

inefficient to apply a brute force or pure random search ap-

proach. The proposed idea is to use a Genetic Algorithm

(GA) for proof searching where an initial population (a set

of potential solution) is first created from frequent HOL

proof steps. Random proof sequences from the population

are then generated by applying two GA operators (crossover

and mutation). Both operators randomly evolve the random

proof sequences by shuffling and changing the proof steps

at particular points. This process of crossover and mutation

continues till the fitness of random proof sequences matches

the fitness of original (target) proofs for theorems/lemmas.

Three crossover and two mutation operators are compared

to access their effect on the overall performance of GAs for

proof searching and optimization.

A few studies have considered integrating GAs in ITPs.

For example, a GA was used with the Coq proof assistant

[9, 22] to automatically find formal proofs of theorems. How-

ever, the approach can only be used to successfully find the

proofs of easy theorems that contain less number of proof

steps. Whereas, for large and complex theorems that require

induction and depend on the proofs of other lemmas, interac-

tion between the proof assistant and the user is still required.

Similarly, genetic programming [13] and a pairwise combi-

nation (that focuses only on crossover based approach) were

used in [2] on patterns (simple tactics) discovered in Isabelle

proofs to evolve them into compound tactics. However, in

their approach, Isabelle’s proofs were represented using a

tree structure, which are linearized, such that the proofs

are split into separate sequences, and weights are assigned

to these sequences. However, linearization leads to the loss

of important connections (information) between different

branches of the proofs due to which interesting patterns and

tactics may be lost in the evolution process. In this work, the

dataset for the proof sequences contains all the necessary

important information that is required for the discovery of

frequent proof steps, through which initial population for

the GA is generated.

The rest of this paper is organized as follows: Section 2

briefly discusses the HOL4 theorem prover and GAs. Section

3 presents the proposed evolutionary approach where a GA

with different crossover and mutation operators is used to

find and optimize random HOL4 proofs. Evaluation of the

proposed approach on different theories available in the

HOL4 library is presented in Section 4. Finally, Section 5

concludes the paper with some open research directions.

2 PRELIMINARIES
A brief introduction to the HOL4 proof assistant and GA is

provided in this section.

HOL4: HOL4 is an ITP that utilizes the simple type theory

along with Hindley-Milner polymorphism for the implemen-

tation of higher-order logic. The logic in the HOL4 system is

represented in the strongly-typed functional programming

language meta language (ML). An ML abstract data type is

used to represent higher-order logic theorems and the only

way to interact with the theorem prover is by executing ML

procedures that operate on values of these data types. Its

theories are a collection of valid HOL types, constants, defi-

nitions, axioms, and theorems which are generally stored as

an ML file. Users can reload a HOL theory into the system

and can utilize the corresponding definitions and theorems

right away. All proofs in HOL4 are ultimately performed

by the computer according to a small set of primitive infer-

ence rules. For example, the tactic DISCH_TAC moves the

antecedent of an implicative goal into assumptions. Similarly,

GEN_TAC strips the outermost universal quantifier from the

conclusion of a goal and CONJ_TAC reduces a conjunctive

goal into two separate sub-goals.

HOL supports two types of interactive proof methods: for-

ward and backward. In forward proof, the user starts with

previously proved theorems and applies inference rules to

reach the desired theorem. A backward (also called goal di-

rected proof) method is the reverse of the forward proof

method. It is based on the concept of a tactic; which is an ML

function that divides the main goals into simple sub-goals. In

the backward proof method, the user starts with the desired

theorem or the main goal and specifies tactics to reduce it to

simpler intermediate sub-goals. The above steps are repeated

for the remaining intermediate goals until we are left with

no further sub-goals and this concludes the proof for the

desired theorem. More details on HOL4 can be found in [21].

Genetic Algorithms: GAs [8] are based on Darwin’s the-

ory (survival of the fittest) and biological evolution princi-

ples. GAs can explore a huge search space (population) to

Proof Searching in HOL4 with Genetic Algorithm SAC ’20, March 30-April 3, 2020, Brno, Czech Republic

find near optimal solutions to difficult problems that one

may not otherwise find in a lifetime. The foremost steps

of a GA include: (1) population generation, (2) selection of

candidate solutions from a population, (3) crossover and (4)

mutation. Candidate solutions in a population are known

as chromosomes or individuals, which are typically finite

sequences or strings (x = x1, x2 ..., xn). Each xi (genes) refers
to a particular characteristics of the chromosome [16]. For

a specific problem, GA starts by randomly generating a set

of chromosomes to form a population and evaluates these

chromosomes using a fitness function f . The function takes

as parameter a chromosome and returns a score indicating

how good the solution is. Besides optimization problems,

GAs are now used in many other fields and systems, such as

bioinformatics, control engineering, scheduling applications,

artificial intelligence, robotics and safety-critical systems.

Crossover operator of GAs is used to guide the search

toward the best solutions. It combines two selected chro-

mosomes to yield potentially better chromosomes. The two

selected chromosomes are called parent chromosomes and

the new chromosomes obtained by crossover are named as

child chromosomes. If an appropriate crossing point is cho-

sen, then the combination of sub-chromosomes from parent

chromosomes may produce better child chromosomes. The

mutation operator applies some random changes to one or

more genes. This may transform a solution into a better so-

lution. The main purpose of this operator is to introduce and

preserve diversity of the population so that a GA can avoid

local minima. More details on GAs can be found in [8, 14].

3 PROOF SEARCHINGWITH A GA
The proposed structure (flowchart) of the GA that is used in

this paper to find and optimize the proofs of theorems/lemmas

in HOL4 theories is shown in Figure 1.

Create an initial population
from HOL4 proof steps

Random generation of proof
sequences from population

Crossover and mutation
operators

Stopping
criteria

YesNo

Determine the fitness of the
proof sequence

Figure 1: Flowchart of the GA for proofs searching and opti-
mization in HOL4

The proof development process in HOL4 is interactive in

nature and it follows the lambda calculus proof representa-
tion. Proofs in HOL4 are costructed with an interactive goal
stack and then put together using the ML function prove. A
user first provides the property (in the form of a lemma or

theorem) that is called a proof goal. User then applies proof

commands and tactics to solve the proof goal. The action

resulting from a proof command and tactics is referred to

as a HOL4 proof step (HPS) here. A HPS may either prove

the goal or generates another proof goal or divide the main

goal into sub-goals. The proof development process for a

theorem or lemma is completed when the main goal or all

the sub-goals are discharged from the goal stack.

After proof development, HOL4 saves the proof scripts

of a theory in a separate proof file. Inside a theory, a par-

ticular proof goal for a theorem or lemma depends on the

specifications and it can be completed by applying the HPS
in different orders. This makes it difficult to automatically

find the proof for a goal or to carry out a brute force or pure

random search for proof searching. However, evolutionary

and heuristic algorithms have the potential to search for the

proofs of theorems/lemmas due to their ability to handle

black-box search and optimization problems.

The data available in HOL4 proof files is first converted

into a proper computational format so that a GA can be used.

Moreover, the redundant information (related to HOL4) that

plays no part in proof searching and evolution is removed

from the proof files. The complete proof for a goal (theo-

rem/lemma) can now be considered as a sequence of HPS. Let
PS = {HPS1,HPS2, . . . HPSm} represent the set of HPS proof
steps. A proof step set PSS is a set of HPS, that is PSS ⊆ PS .
Let the notation |PSS | denotes the set cardinality. For ex-

ample, consider that PS = {RW, PROVE_TAC, FULL_SIMP_TAC,
REPEATGEN_TAC, DISCH_TAC}. The set {RW, FULL_SIMP_TAC,
REPEATGEN_ TAC} is a proof step set that contains three

proof steps. A proof sequence is a list of proof step sets

S = ⟨PSS1, PSS2, ..., PSSn⟩, such that PSSi ⊆ PSS (1 ≤ i ≤ n).
For example, ⟨{RW, PROVE_TAC}, {FULL_SIMP_TAC}, {GEN_TAC,
DISCH_TAC}⟩ is a proof sequence which has three PSS and
five HPS that are used to prove a theorem/lemma. A proof
dataset PD is a list of proof sequences PD = ⟨S1, S2, ..., Sp⟩,
where each sequence has an identifier (ID). For example,

Table 1 shows a PD that has four proof sequences.

Table 1: A sample proof dataset
ID Proof Sequence
1 ⟨{GEN_TAC, CONJ_TAC, MP_TAC}⟩
2 ⟨{GEN_TAC, X_GEN_TAC, PROVE_TAC}⟩
3 ⟨{RW, PROVE_TAC, CONJ_TAC, MAP_EVERYTHING_TAC, AP_TERM_TAC}⟩
4 ⟨{GEN_TAC, SUBGOAL_THEN, DISCH_TAC, CASES_ON, AP_TERM_TAC,

BETA_TAC, CASES_TAC}⟩

SAC ’20, March 30-April 3, 2020, Brno, Czech Republic M. Zohaib Nawaz, Osman Hasan, M. Saqib Nawaz, Philippe Fournier-Viger, and Meng Sun

Algorithm 1 presents the pseudocode of the GA that can

be used to find the proofs in the HOL4 theories that contain

the HPS used for the verification of theorems and lemmas in

those theories. An initial population (Pop) is first created from
frequent HPS (FHPS) that are discovered with various sequen-
tial pattern mining (SPM) techniques [4]. From population,

two random proof sequences (P1 and P2) are generated. Ran-

dom proof sequences first goes through crossover operation

where child proof sequences are generated and their fitness

is evaluated. The mutation operation is applied to the child

having the better fitness value to generate the mutated child

sequence. If a mutated child’s fitness is equal to the fitness of

the target proof sequence from PD, then the mutated child is

returned as the final proof sequence. The process of crossover

and mutation continuous until randomly generated proof

sequences match with the proof sequences from the PD. The
fitness values guide the GA toward the best solution(s) (proof

sequences). Here the fitness value is the total number of HPS
in the random proof sequence that matches the HPS in the

position of the original (target) proof sequence. Algorithm 2

presents the procedure for calculating the fitness value of a

proof sequence.

Algorithm 1 Flow of the GA

Input: FHPS: Frequent HOL proof steps, PD: proof sequences
database

Output: Generated proof sequences

1: Pop← FHPS
2: for each P ∈ PD do
3: P1 ← randomseq(Pop, length(P))
4: P2 ← randomseq(Pop, length(P)) ▷ P1 , P2

5: repeat
6: C ← Crossover (P1, P2)

7: Child ← Mutation(C)
8: if Fitness(Child) < Fitness(P) then
9: repeat

10: else
11: bFitness ← Fitness(Child)
12: bChild ← Child
13: end if
14: until (Fitness(Child) = Fitness(P))
15: return bFitness,bChild
16: end for

The fitness procedure compares each gene i of a random
proof sequence (Pseq) with the genes of the target (P). The
fitness of PSeq is set to 0, and increased by 1 for eachmatching

gene and if the genes in both sequences are equal then the

fitness of 1 is assigned. For example, consider the following

random proof sequence (RP) and the target sequence (TP):
RP = MAP_EVERYTHING_TAC, RULE_ASSUM_TAC, X_GEN_TAC,
SRW_TAC, AP_TERM_TAC, DISCH_TAC, DECIDE_TAC, RW_TAC

TP = POP_ASSUM, REAL_ARITH_TAC, X_GEN_TAC, COND_CASES_TAC,
AP_TERM_TAC, RULE_ASSUM_TAC, X_GEN_TAC, RW_TAC

Algorithm 2 Fitness

Output: Integer that represents the fitness of a proof sequence
(Pseq)
1: procedure Fitness(Pseq)
2: i, f ← 0

3: while (i ≤ length(Pseq) - 1) do
4: if (Pseq[i] = P[i]) then
5: f ← f + 1

6: end if
7: i ← i + 1

8: end while
9: return f
10: end procedure

The Fitness procedure will return 3 as three HPS are the
same in both sequences (at positions 3, 5 and 8 respectively).

Algorithm 3, 4 and 5 present the pseudocode of the three

crossover operators. The symbol o in these algorithms rep-

resents the concatenation. These three crossover procedures

are explained with simple examples. Let P1 and P2 be:

P1 = SRW_TAC, MAP_EVERYTHING_TAC, X_GEN_TAC, AP_TERM_TAC,
RULE_ASSUM_TAC, DISCH_TAC, DECIDE_TAC, RW_TAC

P2 = REAL_ARITH_TAC, POP_ASSUM, X_GEN_TAC, COND_CASES_TAC,
RW_TAC, RULE_ASSUM_TAC, X_GEN_TAC, AP_TERM_TAC

Let n represents the length of both proof sequences and

let position cp (1 ≤ cp ≤ n) be chosen randomly as crossing

point in both proof sequences. Single point crossover (SPC)
produces the following proof sequences for cp = 4:

P ′
1
= SRW_TAC, MAP_EVERYTHING_TAC, X_GEN_TAC,

COND_CASES_TAC, RW_TAC, RULE_ASSUM_TAC, X_GEN_TAC,
AP_TERM_TAC

P ′
2
= REAL_ARITH_TAC, POP_ASSUM, X_GEN_TAC, AP_TERM_TAC,
RULE_ASSUM_TAC, DISCH_TAC, DECIDE_TAC, RW_TAC

Fitness of newly generated sequences are checked last and

SPC returns the proof sequence having the highest fitness.

Algorithm 3 Single Point Crossover

Output: Child proof sequence

1: procedure SPC(P1, P2)

2: size ← min(length(P1), length(P2))

3: cp ← randomint(1, size) ▷ (1 ≤ cp ≤ size)
4: P1 ← P1[1, cp] o P2[cp + 1, length(P2)]

5: P2 ← P2[1, cp] o P1[cp + 1, length(P1)]

6: if (Fitness(P1) > Fitness(P2) then
7: return P1

8: else
9: return P2

10: end if
11: end procedure

Two crossing points are selected by themulti point crossover

(MPC) operator. Let cp1 and cp2 represent two crossing points

(cp1 < cp2 ≤ n). For P1 and P2, the new proof sequences gen-

erated for cp1 = 4 and cp2 = 5 are:

Proof Searching in HOL4 with Genetic Algorithm SAC ’20, March 30-April 3, 2020, Brno, Czech Republic

P ′
1
= SRW_TAC, MAP_EVERYTHING_TAC, X_GEN_TAC,

COND_CASES_TAC, RW_TAC, DISCH_TAC, DECIDE_TAC, RW_TAC
P ′

2
= REAL_AIRTH_TAC, POP_ASSUM, X_GEN_TAC, AP_TERM_TAC,

RULE_ASSUM_TAC, RULE_ASSUM_TAC, X_GEN_TAC, AP_TERM_TAC

Newly generated sequences are evaluated last andMPC
returns the proof sequence having the highest fitness.

In uniform crossover (UC), each element (gene) of the

proof sequences is assigned to the child sequences with a

probability value p. UC evaluates each gene in the proof

sequences and selects the value from one of the proof se-

quences with the probability p. If p is 0.5, then the child has

approximately half of the genes from the first proof sequence

and the other half from the second proof sequence. For P1

and P2, some newly generated proof sequences after UCwith

p = 0.5 are:

P ′
1
= SRW_TAC, POP_ASSUM, X_GEN_TAC, COND_CASES_TAC,
RULE_ASSUM_TAC, DISCH_TAC, X_GEN_TAC, RW_TAC

P ′
2
= REAL_ARITH_TAC, MAP_EVERYTHING_TAC, X_GEN_TAC,

AP_TERM_TAC, RW_TAC, RULE_ASSUM_TAC, DECIDE_TAC,
AP_TERM_TAC

Because UC is a randomized algorithm depending on the

selection probability, the generated child proof sequences can

be different. Fitness of newly generated sequences are then

checked and UC returns the sequence having the highest

fitness.

Algorithm 4 Multi Point Crossover

Output: Child proof sequence

1: procedureMPC(P1, P2)

2: size ← min(length(P1), length(P2))

3: cp1 ← randomint(1,size)
4: cp2 ← randomint(1,size)
5: if cp2 > cp1 then
6: cp2 ← cp2 + 1

7: else
8: cp2 ← cp1

9: cp1 ← cp2

10: end if
11: P1 ← P1[1, cp1] o P2[cp1 + 1, cp2] o P1[cp2 + 1,length(P1)]

12: P2 ← P2[1, cp1] o P1[cp1 + 1, cp2] 0 P2[cp2 + 1,length(P2)]

13: if (Fitness(P1) > Fitness(P2) then
14: return P1

15: else
16: return P2

17: end if
18: end procedure

The mutation operation is applied after the crossover op-

eration. The standard mutation (SM) operator of GAs adds

random information to the search process which helps avoid-

ing getting stuck in local optima. In SM, the selected location

value is changed from its original value with some proba-

bility. This probability is called mutation probability, and

is denoted as pm . For a proof sequence, a randomly chosen

Algorithm 5 Uniform Crossover

Output: Child proof sequence

1: procedure UC(P1, P2,p)
2: size ← min(length(P1), length(P2))

3: for i in range(size) do
4: if unifromreal[0,1] ≤ p then
5: P1[i] ← P2[i]
6: P2[i] ← P1[i]
7: end if
8: end for
9: if (Fitness(P1) > Fitness(P2) then
10: return P1

11: else
12: return P2

13: end if
14: end procedure

genes value i is replaced by a random HPS from the cur-

rent population Pop. For example, a mutation of the proof

sequence P1 is:

P ′
1
= SRW_TAC, POP_ASSUM, X_GEN_TAC, DECIDE_TAC,

RULE_ASSUM_TAC, DISCH_TAC, X_GEN_TAC, RW_TAC

Algorithm 6 Standard Mutation

Output: Mutated child proof sequence

1: procedure SM(P1)

2: ind ← randomint(1, size)
3: alter ← randomsample(Pop, 1) ▷ (1-length proof sequence

form Pop)
4: P1[ind] ← alter ▷ (P1[ind] , alter)

5: return P1

6: end procedure

The pairwise interchange mutation (PIM) operator selects

and interchanges two arbitrary genes from a proof sequence.

But for proof searching, this GA was unable to find the target

proof sequence with PIM as it was only interchanging the

values between two gene in the random proof sequence. To

address this issue, we have modified the PIM procedure such

that the two selected gene values are replaced with random

HPS from the Pop rather than interchanging the values. For

instance, by applying PIM on the proof sequence P1, the

following mutated proof sequence can be obtained:

P ′
1
= SRW_TAC, REWRITE_TAC, X_GEN_TAC, DECIDE_TAC,
RULE_ASSUM_TAC, BETA_TAC, X_GEN_TAC, RW_TAC

The reason to use more than one crossover and mutation

operator is to investigate their effect on the overall perfor-

mance of the GA in proof searching. It is important to point

out that in each generation, a random proof sequence goes

through crossover and mutation operation with a probability

of 1 to reduce the number of iterations performed by the GA.

SAC ’20, March 30-April 3, 2020, Brno, Czech Republic M. Zohaib Nawaz, Osman Hasan, M. Saqib Nawaz, Philippe Fournier-Viger, and Meng Sun

Algorithm 7 Modified Pairwise Interchange Mutation

Output: Mutated child proof sequence

1: procedureMPIM(P1)

2: mp1 ← randomint(1, length(P1))

3: mp2 ← randomint(1, length(P1)) ▷mp1 ,mp2

4: nд,alter ← randomsample(Pop, 2)
5: P1[mp1] ← nд ▷ (P1[mp1] , ng)

6: P1[mp2] ← alter ▷ (P1[mp2] , alter)

7: return P1

8: end procedure

4 RESULTS AND DISCUSSION
The GAwith different versions of the crossover andmutation

operators is implemented in Python and the code can be

found at [5]. To evaluate the proposed approach, experiments

were carried on a fifth generation Core i5 processor and 8

GB of RAM. Some initial and important results obtained by

applying the GA on PDwith different crossover andmutation

operators are discussed in this section.

We investigate the performance of the proposed GA for

finding the proofs of theorems in six HOL4 theories available

in the library. These theories are: Transcendental, Arithmetic,
RichList, Number, Sort and Rational. We selected ten theo-

rems from each theory and in total, we have proof sequences

for sixty theorems/lemmas in the PD. Table 2 lists some of

the important theorems/lemmas from the theories. For exam-

ple, L1 (Lemma 1) from the transcendental theory proves the

property for the exponential bound of a real number x . Sim-

ilarly, T2 is the theorem for the positive value of sin when

the given value is in the range [0− 2]. T10 from the Rational
theory is the dense theorem that proves that in between any

two real numbers, there exists a rational number.

Table 2: A sample of theorems/lemmas in six HOL4 theories
HOL Theory No. HOL4 Theorems

L1 ⊢ ∀x. 0<=x∧xv<= inv(2) ==> exp(x) <= 1+2*x
Transcendental T1 ⊢ ∀ x. (\n. (∧exp_ser) n (x pow n)) sums exp(x)

T2 ⊢ ∀ x. 0 < x∧ x < 2 ==> 0 < sin (x)
Arithmetic T3 ⊢ ∀n a b. 0 < n ==>((SUC a MOD n = SUC b MOD n)

= (a MOD n = b MOD n))
RichList T4 ⊢ ∀m n. ((l:’a list). ((m + n)=(LENGTH l))==>

(APPEND (FIRSTN n l) (LASTN m l) = l)
T5 ⊢ ∀n m. (m <= n ==> (iSUB T n m = n - m)) ∧

Number (m < n ==> (iSUB F n m = n - SUC m))
T6 ⊢ ∀ n a. 0 < onecount n a ∧ 0 < n ==>

(n = 2 EXP (onecount n a - a) - 1)
Sort T7 ⊢ (PERM L [x] = (L = [x]))∧(PERM [x] L = (L =

T8 [x])) ⊢ PERM = TC PERM_SINGLE_SWAP
T9 ⊢ ∀ x y. abs_rat (frac_add (rep_rat (

Rational abs_rat x)) y) = abs_rat (frac_add x y)
T10 ⊢ ∀ r1 r3. rat_les r1 r3 ==> ?rat_res r1 r2

∧ rat_les r2 r3

The GAwas run with the different crossover and mutation

operators on considered theorems/lemmas ten times. Fitness

values in Table 3 represents the total HPS that are used in the

complete proof and this value is the same for respective the-

orems and lemmas in all crossover and mutations operators.

The generations columns shows how many times a random

proof sequences goes through GA operators to reach the tar-

get proof sequence. The time column represents how much

time (in seconds) is taken by GA to find the complete proof

for a theorem. We found that different crossover operators

with the same mutation operator required almost the same

number of generations to find the target proofs. However,

with MPIM (Algorithm 7), the target proofs are found in less

generations as compared to SM (Algorithm 6) . It is important

to point out that the probability in UC (Algorithm 5) has no

noticeable effect on the average generation count of the GA.

That is why we select the probability (p = 0.5) for UC. The
average generations for the GA with different crossover and

mutation operators to reach the target proof sequences in

the whole dataset are shown in Table 4. MPIM is approxi-

mately ten times faster than SM. The possible reason is that

SM changes the HPS at a single location of the sequence,

while MPIM changes two locations. Thus, MPIM explores a

more diverse solution as compared to SM.

Table 3: Results for the proposed GA
T/L C∗ & M∗ Fit∗∗ Generations Time C & M Fit Generations Time
L1 SPC/SM 54 1903765 55.43 SPC/MPIM 54 314043 9.52

T1 SPC/SM 58 2103765 60.10 SPC/MPIM 58 334043 10.33

T2 SPC/SM 81 1947597 93.56 SPC/MPIM 81 392822 12.89

T3 SPC/SM 66 2473394 62.35 SPC/MPIM 66 191162 6.61

T4 SPC/SM 19 297179 4.72 SPC/MPIM 19 38307 0.93

T5 SPC/SM 23 501813 8.30 SPC/MPIM 23 33655 0.71

T6 SPC/SM 30 709484 13.09 SPC/MPIM 30 34776 0.79

T7 SPC/SM 17 264263 4.11 SPC/MPIM 17 21136 0.40

T8 SPC/SM 42 811951 28.49 SPC/MPIM 42 39302 1.41

T9 SPC/SM 23 554111 9.30 SPC/MPIM 23 45309 0.90

T10 SPC/SM 23 546136 9.21 SPC/MPIM 23 51552 1.01

L1 MPC/SM 54 1488005 27.21 MPC/MPIM 54 105521 3.29

T1 MPC/SM 58 1540467 35.93 MPC/MPIM 58 153644 5.01

T2 MPC/SM 81 1898305 80.38 MPC/MPIM 81 191699 7.69

T3 MPC/SM 66 1128636 31.54 MPC/MPIM 66 104784 3.60

T4 MPC/SM 19 358182 7.01 MPC/MPIM 19 24960 0.48

T5 MPC/SM 23 384539 7.19 MPC/MPIM 23 42750 0.83

T6 MPC/SM 30 738037 10.21 MPC/MPIM 30 73408 1.13

T7 MPC/SM 17 276087 5.32 MPC/MPIM 17 19997 0.43

T8 MPC/SM 42 1245801 25.67 MPC/MPIM 42 101795 2.52

T9 MPC/SM 23 411625 7.73 MPC/MPIM 23 27578 0.63

T10 MPC/SM 23 480625 8.26 MPC/MPIM 23 25314 0.55

L1 UC/SM 54 1652013 61.83 UC/MPIM 54 63277 1.86

T1 UC/SM 58 1682200 68.32 UC/MPIM 58 126097 2.92

T2 UC/SM 81 2348878 101.63 UC/MPIM 81 312328 8.21

T3 UC/SM 66 1662751 44.81 UC/MPIM 66 257215 7.48

T4 UC/SM 19 706950 11.12 UC/MPIM 19 20702 0.41

T5 UC/SM 23 819903 14.97 UC/MPIM 23 71614 1.37

T6 UC/SM 30 867183 17.21 UC/MPIM 30 74635 1.53

T7 UC/SM 17 321183 6.16 UC/MPIM 17 20263 0.42

T8 UC/SM 42 804969 20.53 UC/MPIM 42 29606 0.95

T9 UC/SM 23 625908 11.38 UC/MPIM 23 130303 2.50

T10 UC/SM 23 716950 13.07 UC/MPIM 23 90425 1.94

∗
Crossover and mutation,

∗∗
Fitness.

Population diversity greatly influences a GA’s ability to

pursue a fruitful exploration as it iterates from a generation

to another [18]. The proof searching process with GA can be

trapped in a local optima due to the loss of diversity through

premature convergence of the HPS in the population. This

makes the diversity maintenance and computation one of

the fundamental issues for the GA. We studied population

Proof Searching in HOL4 with Genetic Algorithm SAC ’20, March 30-April 3, 2020, Brno, Czech Republic

Table 4: Average total generation count
Crossover Mutation Ave. Generation Count

SPC SM 25483429

MPC SM 27094322

UC SM 27145732

SPC MPIM 2511045

MPC MPIM 2321555

UC MPIM 2448802

diversity with twomeasures. The first one being the standard

deviation of fitness SDf , whose values in the Pop of HPS is
measured as:

SDf =

√∑N
i=1
(fi − ¯f)2

N − 1

where N is the total number of proof sequences, fi is the
fitness of the ith proof sequence and

¯f is the mean of the

fitness values. As the fitness values for random proof se-

quences remain the same (after evolution) for all crossover

and mutation operators, so SDf is 14.25 with a mean of 11.26

for the GA. The second measure that is used to investigate

the variability of HPS in Pop and the extent of deviation (dis-

persion) for the proof sequences as a whole is the standard

deviation of time (SDt), which is measured as:

SDt =

√∑N
i=1
(ti − t̄)

2

N − 1

where ti is the time taken by the GA to find the correct ith
proof sequence and t̄ is the mean of the time values. Table 5

lists the calculated SDt for all the proofs in the PD along with

their mean and total time for different crossover and muta-

tion operators. A low SD indicates that the data (time values

to find respective HPS in proof sequences) is less spread out

and is clustered closely around the mean average values.

Whereas a high SD means that the data is spread apart from

the mean. SM is found to be approximately ten times slower

than MPIM. That is why we have more time points for SM
than MPIM, which makes the SDt and the respective mean
higher for SM. We also checked the amount of memory used

by GA (shown in Table 5) while searching for proofs. More-

over, we noticed that the GA using different crossover and

mutation operators require approximately the same memory

while searching for proofs and their optimization in PD.

Table 5: SDt , mean and total time for the GA
C & M Mean SDt Time Memory
SPC/SM 9.87 52.82 629.68 s 4590 Mb

MPC/SM 11.50 61.99 834.87 s 4427 Mb

UC/SM 10.77 58.68 692.79 s 4816 Mb

SPC/MPIM 0.33 1.94 83.35 s 4831 Mb

MPC/MPIM 0.34 1.76 99.94 s 4766 Mb

UC/MPIM 0.33 1.57 48.17 s 4936 Mb

Next, we checked how much time on average the GA

takes to find the HPS in random proof sequences that match

with the HPS in the target sequence (shown in Figure 2).

The runtime difference when applying the GA with various

crossover and mutation operators to find the correct HPS in
a proof sequence is negligible. It is observed that different

crossover operators with SM takesmore time thanMPIM. The

time to find the HPS increases for each following HPS. SPC
takes more time thanMPC and UC in SM. On the other hand,

the runtime behavior using different crossover operators

with MPIM is uniform.

0

0.4

0.8

1.2

1.6

1 2 3 4 5 6 7 8 9 10

Ti
m

e
 (

Se
c)

Found HPS by GA

SPC/SM MPC/SM

UCO/SM SPC/MPIM

MPC/MPIM UCO/MPIM

Figure 2: Time used by GA to find the first ten matched HPS

0

5

10

15

20

25

30

35

40

45

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101105109113117121

Ti
m

e
 (

Se
c)

Generations

SPC/SM
MPC/SM
UCO/SM
SPC/MPIM
MPC/MPIM
UCO/MPIM

Figure 3: Total time and generations for the PSF theorem

The longest proof in the PD is for the theorem T2 (pos-
itive value of sin) and it consists of 81 HPS. Here we call

this theorem PSF. The runtime of the GA to find all matched

81 HPS in PSF with different crossover and mutation oper-

ators is shown in Figure 3. Those generations are shown

on the x-axis where the GA was able to find the HPS in a

random proof sequence that matches with the HPS in PSF.
Generations where HPS does not match are excluded. We

observed that in most of the generations, the GA was unable

SAC ’20, March 30-April 3, 2020, Brno, Czech Republic M. Zohaib Nawaz, Osman Hasan, M. Saqib Nawaz, Philippe Fournier-Viger, and Meng Sun

to find the same HPS in a random proof sequence and PSF.
The time 0 in generations 41-45 indicates that the random

proof sequences evolved by the GA have not matched the

HPS in PSF. That is why, it takes 121 generations on average

to find the complete proof. In each generation of the GA,

the probability to find the complete correct proof for PSF
with different crossover and SM is approximately 4.84× 10

−6

and with different crossover andMPIM is 5.04× 10
−5
. This is

much better than proof searching with a pure random search.

For example, the probability for a pure random search to find

a valid proof for PSF can be: 121 × 76/ 60
81 ≈ 1.03 × 10

−145
.

For the theorems with smaller (fitness of 10) proof sequences,

the probability is in the magnitude of 10
−14

.

Overall, it was observed through various experiments that

the proposed GA is able to optimize and automatically find

the correct proofs for theorems/lemmas in different HOL4

theories and thus in turn reduce the memory usage. Besides

HOL4, this approach can also be used in other proof assis-

tants such as Coq and PVS. These preliminary results indicate

that the research direction of linking and integrating evolu-

tionary algorithms with proof assistants is worth pursuing.

This approach may have a considerable impact to advance

and accumulate human knowledge, especially in the fields

of formal logic and computation.

5 CONCLUSION
ITPs require user interaction with the proof assistants to

guide and find the proof for a particular goal, which can

make the proof development process cumbersome and time

consuming, in particular for long and complex proofs. We

introduced an evolutionary approach in this paper for the

possible linkage between evolutionary algorithms, such as

GAs, with theorem provers, such as HOL4, to facilitate the

proof finding and development process. A GA with different

crossover and mutation operators is proposed to optimize

and find the correct proofs in HOL4 theories. The perfor-

mance of the GA with three crossover and two mutation

operators was compared on the basis of fitness, population

diversity measures, time and memory.

The proposed work leads to several directions for future

work. First, we would like to make the proof searching pro-

cess more general in nature to evolve frequent proof steps to

a compound proof strategies for guiding the proofs of new

conjectures. Moreover, stochastic optimization techniques,

such as particle swarm optimization, and heuristic search al-

gorithms, such as monte carlo tree search can be considered

for proofs searching. Another direction is to take advantage

of Curry-Howard isomorphism for sequent calculus [20] that

provides a direct relation between programming and proofs,

where finding proofs can be viewed as writing programs.

With such correspondence, a variant of GA called linear ge-

netic programming can be used to write programs (proofs)

and HOL4 proof assistant for simplification and verification

by computationally evaluating the programs.

REFERENCES
[1] Y. Bertot and P. Casteran. 2003. Interactive theorem proving and program

development: Coq‘Art: The calculus of inductive construction. Springer.
[2] H. Duncan. 2007. The use of data-mining for the automatic formation

of tactics. Ph.D. Dissertation. University of Edinburgh, UK.

[3] M. Färber and C. E. Brown. 2016. Internal guidance for Satallax. In

Proceedings of IJCAR, 2016 (LNCS), Vol. 9706. Springer, 349–361.
[4] P. Fournier-Viger, J. C. W. Lin, R. U. Kiran, Y. S. Koh, and R. Thomas.

2017. A survey of sequential pattern mining. Data Science and Pattern
Recognition 1(1) (2017), 54–77.

[5] GA implementation. [n.d.]. Available at:

github.com/muhammadzohaibnawaz/GAHOL4.

[6] T. Gauthier, C. Kaliszyk, and J. Urban. 2017. TacticToe: Learning to

reason with HOL4 tactics. In Proceedings of LPAR, 2017 (EPiC Series in
Computing), Vol. 46. 125–143.

[7] O. Hasan and S. Tahar. 2015. Formal verification methods. In Ency-
clopedia of Information Science & Technology, 3rd edition. IGI Global,
7162–7170.

[8] J. H. Holland. 1975. Adaptation in natural and artificial systems. Uni-
versity of Michigan Press, Ann Arbor, MI, USA.

[9] S. Y. Huang and Y. P. Chen. 2017. Proving theorems by using evolu-

tionary search with human involvement. In Proceedings of CEC, 2017.
IEEE, 1495–1502.

[10] G. Irving, C. Szegedy, A. A. Alemi, N. Eén, F. Chollet, and J. Urban.

2016. DeepMath - Deep sequence models for premise selection. In

Proceedings of NIPS, 2016. ACM, 2235–2243.

[11] C. Kaliszyk, F. Chollet, and C. Szegedy. 2017. HolStep: A machine

learning dataset for Higher-Order Logic theorem proving. CoRR
abs/1703.00426 (2017).

[12] C. Kaliszyk, L. Mamane, and J. Urban. 2014. Machine Learning of Coq

Proof Guidance: First Experiments. In Proceedings of SCSS, 2014 (EPiC
Series in Computing), Vol. 30. 27–34.

[13] J. R. Koza. 1993. Genetic programming - On the programming of com-
puters by means of natural selection. MIT Press.

[14] M. Mitchell. 1996. An introduction to genetic algorithms. MIT Press.

[15] M. S. Nawaz, M. Malik, Y. Li, M. Sun, and M. I. Lali. 2019. A survey on

theorem provers in Formal methods. arXiv:cs.SE/1912.03028.

[16] M. S. Nawaz and M. Sun. 2018. A formal design model for genetic

algorithms operators and its encoding in PVS. In Proceedings of BDIOT,
2018. ACM, 186–190.

[17] M. S. Nawaz, M. Sun, and P. Fournier-Viger. 2019. Proof guidance

in PVS with sequential pattern mining. In Proceedings of FSEN, 2019
(LNCS), Vol. 11761. Springer, 45–60.

[18] A. L. Nsakanda, W. L. Price, M. Diaby, and M. Gravel. 2007. Ensuring

population diversity in genetic algorithms: A technical note with appli-

cation to the cell formation problem. European Journal of Operational
Research 178 (2007), 634–638.

[19] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. 2001.

PVS system guide, PVS prover guide, PVS language reference. Technical
Report. SRI International.

[20] J. E. Santo. 2015. Curry-Howard for sequent calculus at last!. In Pro-
ceedings of TLCA, 2015 (LIPIcs), Vol. 38. 165–179.

[21] K. Slind andM. Norrish. 2008. A brief overview of HOL4. In Proceedings
of TPHOL, 2008. Springer, 28–32.

[22] L. A. Yang, J. P. Liu, C. H. Chen, and Y. P. Chen. 2016. Automatically

proving mathematical theorems with evolutionary algorithms and

proof assistants. In Proceddings of CEC, 2016. IEEE, 4421–4428.

http://arxiv.org/abs/cs.SE/1912.03028.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Proof Searching with a GA
	4 Results and Discussion
	5 Conclusion
	References

